Tiina Ristmae, Dimitra Dionysiou, Miltiadis Koutsokeras, Athanasios Douklias, Eleftherios Ouzounoglou, Angelos Amditis, et al. (2021). The CURSOR Search and Rescue (SaR) Kit: an innovative solution for improving the efficiency of Urban SaR Operations. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 867–880). Blacksburg, VA (USA): Virginia Tech.
Abstract: CURSOR (Coordinated Use of miniaturized Robotic equipment and advanced Sensors for search and rescue OpeRations) is an ongoing European H2020 project with the main objective to enhance the efficiency and safety of Urban Search and Rescue (USaR) operations on disaster sites. CURSOR's approach relies on the integration of multiple mature and emerging technologies offering complementary capabilities to an USaR system, so as to address several challenges and capability gaps currently encountered during first responder missions. The project's research and development are structured around an earthquake master scenario. CURSOR aspires to advance the state-of the-art in several key aspects, including reduced time for victim detection, increased victim localization accuracy, enhanced real-time worksite information management, improved situational awareness and rescue team safety.
|
|
Sebastian Schmitz, Lennart Landsberg, Tim Brüstle, Johannes Weinem, & Ompe Aimé Mudimu. (2018). Evaluation of a flying localization system for the rescue of buried victims – A scenario based training approach. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 1143–1147). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: The objective of this study was to develop various scenarios for evaluating an unmanned aerial vehicle that is developed for the localization of buried people after a building collapse. To test their concept of implementing this system into the command structure of organized first response the authors plan to carry out a tabletop exercise in laboratory scale and a large-scale exercise. Scenario based training is used as methodic approach for these exercises. To develop realistic scenarios, relevant national and international organizations and their requirements have been identified. Also, the requirements of the localization system have been taken into account. Furthermore, real incidents have been analyzed and their match with the requirements has been verified. As result one national and one international scenario, based on real incidents, are developed.
|
|
Sebastian Schmitz, Konrad Barth, Tim Brüstle, Tobias Gleibs, & Ompe Aimé Mudimu. (2019). Testing the implementation of a flying localization system into emergency response using a tabletop exercise. In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: To optimize the search for trapped victims after building collapses, the authors participated in the development ofI a localization system based on an unmanned aerial vehicle. The objective of this study is to evaluate an approach to implement this system into the command and control structures during the emergency response after a building collapse. For this purpose, a tabletop exercise, based on a gas explosion scenario in an apartment building, was carried out with emergency response managers of the fire department and the German federal agency of technical relief. Observers have documented the exercise. Additionally, audio and video recordings were used. Thus, statements could be made about the implementation approach and the tabletop exercise method. Based on the results, the implementation approach can be considered appropriate. In addition, knowledge was gained about the appropriateness of tabletop exercises for the purpose of scientific evaluation.
|
|
Martin Voshell, & Stijn Oomes. (2006). Coordinating (Shared) perspectives in robot assisted search & rescue. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 188–196). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: From high fidelity field exercises to disaster response deployments, search and rescue robots are being readily integrated into rescue operations. Previous research has proposed that for such new technology to be successful in an operation the organization architecture needs to support the coordination of shared perspectives between the human team members and the robotic platforms. For this, the robot platforms need to be effective team players in the field of practice. Based on this conceptual model, this paper introduces a novel software interface utilizing virtual position and orientation indicators to alleviate perceptual ambiguities and navigation problems experienced by robot handlers and problem holders. By actively orchestrating and sharing these indicators between handler and operator displays, the interface caters to user expertise and to the natural competency of the human perceptual system. These probes provide a basic tool for aiding robot navigation and way-finding fundamental to effective team coordination and communication in urban search and rescue missions.
|
|
Corine H.G. Horsch, Nanja J. J. M. Smets, Mark A. Neerincx, & Raymond H. Cuijpers. (2013). Comparing performance and situation awareness in USAR unit tasks in a virtual and real environment. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 556–560). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: A convenient way to test Urban Search And Rescue (USAR) robots would be in virtual environments (VEs). Evaluations in VEs are generally accepted as alternative for real scenarios. There are obvious differences between operation in a real and virtual environment. Nonetheless, the current experiment showed no significant differences in situation awareness (SA) and performance during several elementary tasks (e.g. slalom) between a virtual world and a previous experiment in reality (Mioch, Smets, & Neerincx, 2012). Only small dependencies between the unit tasks were found. The effect of individual differences (like gender, km driven per year, and gaming experience), were significant for certain elementary tasks. Testing robots in virtual environments could still be useful even if differences between VE and reality exist, since comparisons of different conditions in VE seems to have the same results as the same comparison in the field (Bishop & Rohrmann, 2003; Van Diggelen, Looije, Mioch, Neerincx, & Smets, 2012).
|
|