Aladdin Shamoug, Stephen Cranefield, & Grant Dick. (2018). Information Retrieval for Humanitarian Crises via a Semantically Classified Word Embedding. In Kristin Stock, & Deborah Bunker (Eds.), Proceedings of ISCRAM Asia Pacific 2018: Innovating for Resilience – 1st International Conference on Information Systems for Crisis Response and Management Asia Pacific. (pp. 132–144). Albany, Auckland, New Zealand: Massey Univeristy.
Abstract: Decision-makers in humanitarian crisis need information to guide them in making critical decisions. Finding information in such environments is a challenging task. Therefore, decision-makers rely on domain experts who possess experience and knowledge from previous humanitarian crises to provide them with the information they need. In this paper, we explore the ability of the existing computing technologies to augment the capabilities of those experts and help decision-makers to make faster and better decisions. Among many computing technologies we have today, word embedding and the semantic web are able to support such augmentation of the domain expert. In this paper, we train a word embedding model using word2vec, transform words and terms from news archive to entities in domain ontology, annotate those entities with their equivalent concepts from upper ontologies, and reason about them using semantic similarity and semantic matching, to represent and retrieve knowledge, and answer questions of interest to decision-makers in humanitarian crises. The approach was evaluated by comparing the use of word embeddings with and without semantic classification for the retrieval of information about the current humanitarian crisis in Syria.
|
Grégoire Burel, & Harith Alani. (2018). Crisis Event Extraction Service (CREES) – Automatic Detection and Classification of Crisis-related Content on Social Media. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 597–608). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: Social media posts tend to provide valuable reports during crises. However, this information can be hidden in large amounts of unrelated documents. Providing tools that automatically identify relevant posts, event types (e.g., hurricane, floods, etc.) and information categories (e.g., reports on affected individuals, donations and volunteering, etc.) in social media posts is vital for their efficient handling and consumption. We introduce the Crisis Event Extraction Service (CREES), an open-source web API that automatically classifies posts during crisis situations. The API provides annotations for crisis-related documents, event types and information categories through an easily deployable and accessible web API that can be integrated into multiple platform and tools. The annotation service is backed by Convolutional Neural Networks (CNNs) and validated against traditional machine learning models. Results show that the CNN-based API results can be relied upon when dealing with specific crises with the benefits associated with the usage word embeddings.
|
Hongmin Li, Xukun Li, Doina Caragea, & Cornelia Caragea. (2018). Comparison of Word Embeddings and Sentence Encodings for Generalized Representations in Crisis Tweet Classifications. In Kristin Stock, & Deborah Bunker (Eds.), Proceedings of ISCRAM Asia Pacific 2018: Innovating for Resilience – 1st International Conference on Information Systems for Crisis Response and Management Asia Pacific. (pp. 480–493). Albany, Auckland, New Zealand: Massey Univeristy.
Abstract: Many machine learning and natural language processing techniques, including supervised and domain adaptation algorithms, have been proposed and studied in the context of filtering crisis tweets. However, applying these approaches in real-time is still challenging because of time-critical requirements of emergency response operations and also diversities and unique characteristics of emergency events. In this paper, we explore the idea of building “generalized” classifiers for filtering crisis tweets that can be pre-trained, and are thus ready to use in real-time, while generalizing well on future disasters/crises data. We propose to achieve this using simple feature based adaptation with tweet representations based on word embeddings and also sentence-level embeddings, representations which do not rely on unlabeled data to achieve domain adaptations and can be easily implemented. Given that there are different types of word/sentence embeddings that are widely used, we propose to compare them to get a general idea about which type works better with crisis tweets classification tasks. Our experimental results show that GloVe embeddings in general work better with the datasets used in our evaluation, and that the supervised algorithms used in our experiments benefit from GloVe embeddings trained specifically on crisis data. Furthermore, our experimental results show that following GloVe, the sentence embeddings have great potential in crisis tweet tasks.
|
Julien Coche, Aurelie Montarnal, Andrea Tapia, & Frederick Benaben. (2020). Automatic Information Retrieval from Tweets: A Semantic Clustering Approach. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 134–141). Blacksburg, VA (USA): Virginia Tech.
Abstract: Much has been said about the value of social media messages for emergency services. The new uses related to these platforms bring users to share information, otherwise unknown in crisis events. Thus, many studies have been performed in order to identify tweets relating to a crisis event or to classify these tweets according to certain categories. However, determining the relevant information contained in the messages collected remains the responsibility of the emergency services. In this article, we introduce the issue of classifying the information contained in the messages. To do so, we use classes such as those used by the operators in the call centers. Particularly we show that this problem is related to named entities recognition on tweets. We then explain that a semi-supervised approach might be beneficial, as the volume of data to perform this task is low. In a second part, we present some of the challenges raised by this problematic and different ways to answer it. Finally, we explore one of them and its possible outcomes.
|
Kiran Zahra, Rahul Deb Das, Frank O. Ostermann, & Ross S. Purves. (2022). Towards an Automated Information Extraction Model from Twitter Threads during Disasters. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 637–653). Tarbes, France.
Abstract: Social media plays a vital role as a communication source during large-scale disasters. The unstructured and informal nature of such short individual posts makes it difficult to extract useful information, often due to a lack of additional context. The potential of social media threads– sequences of posts– has not been explored as a source of adding context and more information to the initiating post. In this research, we explored Twitter threads as an information source and developed an information extraction model capable of extracting relevant information from threads posted during disasters. We used a crowdsourcing platform to determine whether a thread adds more information to the initial tweet and defined disaster-related information present in these threads into six themes– event reporting, location, time, intensity, casualty and damage reports, and help calls. For these themes, we created the respective thematic lexicons from WordNet. Moreover, we developed and compared four information extraction models trained on GloVe, word2vec, bag-of-words, and thematic bag-of-words to extract and summarize the most critical information from the threads. Our results reveal that 70 percent of all threads add information to the initiating post for various disaster-related themes. Furthermore, the thematic bag-of-words information extraction model outperforms the other algorithms and models for preserving the highest number of disaster-related themes.
|
Wang, D. (2023). Public Cognition and Perception on Social Media in Crisis. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 1081–1082). Omaha, USA: University of Nebraska at Omaha.
Abstract: Microblogging platforms have been increasingly used in crisis, facilitating more participatory communication between official response channels and affected communities. Despite the potential benefits, research has shown that disaster response organizations could not effectively utilize social media data due to data deluge (Knox 2022). To better understand the information needed for disaster response, we turn to the National Incident Management System Guidance for public information officers (PIOs) (NIMS Basic Guidance for PIOs 2020), the primary spokesperson for emergency management organizations. The guidance indicates that PIOs use social media for two major purposes, supporting their operational needs and gauging public perception of risk and incident response. To support the operational needs, the crisis informatics literature has heavily focused on information types supporting situational awareness, including serviceable, eyewitness or actionable information. However, the information representing public perception, such as people’s cognitive and perceptual processes in response to incidents, has been less addressed at scale. To bridge the gap between quantitative study in crisis informatics and information representing cognitive and perceptual processes and better support the task of PIOs, I focus on the study of people’s cognitive and perceptual processes on social media for my research. Cognitive and perceptual processes refer to the way that people pay attention to or process environmental inputs, including the mental activities of acquisition, processing or evaluation of environmental cues, social cues, and warnings. These processes reveal people’s perception of- and decision-making in response to potential threats. With this focus, I seek to answer the following research question: How could people’s cognitive and perceptual processes be inferred from their social media activities in crisis to benefit stakeholders in incident response? My interest in tracing this overall theme through a varied range of sub-tasks produces three more specific research questions: RQ1. How can information exposure and attention be operationalized to highlight cognitive and perceptual processes? RQ2. How do people’s perception of risk communications from stakeholders vary in crisis? RQ3. How could a principled and scalable pipeline be designed to identify people’s cognitive and affective perceptions on Twitter? I took cues from the Protective Action Decision Model (Lindell and Perry 2012) and leveraged baselines in the literature to address these research questions. To address the first research question, I proposed a metric that conceptualized and operationalized the predecision process. The proposed metric was incorporated into a pipeline and applied to two real-word events to recommend messages that represent the shift of collective attention of those locally affected with a specialized focus on cognitive and perceptual processes. To address the second research question, I went beyond the perception of risks to include perceptions of risk communications by stakeholders. I performed an empirical study of the relation between risk communications by stakeholders and different kinds of public perceptions (Lindell and Perry 2012). To address the third research question, I proposed a future work to provide benchmark coding schemes, datasets and models to quantitatively identify information representing cognitive and perceptual processes. I will leverage existing benchmark datasets in the literature (Olteanu et al. 2014; Imran et al. 2016; Alam et al. 2018; Zahra et al. 2020; Rudra et al. 2017; Mazloom et al. 2018; Purohit et al. 2018) and coding schemes in qualitative studies (Trumbo et al. 2016; Demuth et al. 2018) and create benchmark classification models.
|
Wang, D., & Kogan, M. (2023). Resonance+: Augmenting Collective Attention to Find Information on Public Cognition and Perception of Risk. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 487–500). Omaha, USA: University of Nebraska at Omaha.
Abstract: Microblogging platforms have been increasingly used by the public and crisis managers in crisis. The increasing volume of data has made such platforms more difficult for officials to find on-the-ground information and understand the public’s perception of the evolving risks. The crisis informatics literature has proposed various technological solutions to find relevant information from social media. However, the cognitive processes of the affected population and their subsequent responses, such as perceptions, emotional and behavioral responses, are still under-examined at scale. Yet, such information is important for gauging public perception of risks, an important task for PIOs and emergency managers. In this work, we leverage the noise-cutting power of collective attention and take cues from the Protective Action Decision Model, to propose a method that estimates shifts in collective attention with a special focus on the cognitive processes of those affected and their subsequent responses.
|
Yingjie Li, Seoyeon Park, Cornelia Caragea, Doina Caragea, & Andrea Tapia. (2019). Sympathy Detection in Disaster Twitter Data. In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: Nowadays, micro-blogging sites such as Twitter have become powerful tools for communicating with others in
various situations. Especially in disaster events, these sites can be the best platforms for seeking or providing social
support, of which informational support and emotional support are the most important types. Sympathy, a sub-type
of emotional support, is an expression of one?s compassion or sorrow for a difficult situation that another person
is facing. Providing sympathy to people affected by a disaster can help change people?s emotional states from
negative to positive emotions, and hence, help them feel better. Moreover, detecting sympathy contents in Twitter
can potentially be used for finding candidate donors since the emotion ?sympathy? is closely related to people who
may be willing to donate. Thus, in this paper, as a starting point, we focus on detecting sympathy-related tweets.
We address this task using Convolutional Neural Networks (CNNs) with refined word embeddings. Specifically, we
propose a refined word embedding technique in terms of various pre-trained word vector models and show great
performance of CNNs that use these refined embeddings in the sympathy tweet classification task. We also report
experimental results showing that the CNNs with the refined word embeddings outperform not only traditional
machine learning techniques, such as Naïve Bayes, Support Vector Machines and AdaBoost with conventional
feature sets as bags of words, but also Long Short-Term Memory Networks.
|