Nurollahian, S., Talegaonkar, I., Bell, A. Z., & Kogan, M. (2023). Factors Affecting Public’s Engagement with Tweets by Authoritative Sources During Crisis. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 459–477). Omaha, USA: University of Nebraska at Omaha.
Abstract: People increasingly use social media at the time of crisis, which produces a social media data deluge, where the public may find it difficult to locate trustworthy and credible information. Therefore, they often turn to authoritative sources: official individuals and organizations who are trusted to provide reliable information. It is then imperative that their credible messages reach and engage the widest possible audience, especially among those affected. In this study, we explore the role of metadata and linguistic factors in facilitating three types of engagement — retweets, replies, and favorites— with posts by authoritative sources. We find that many factors are similarly important across models (popularity, sociability, activity). However, some features are salient for only a specific type of engagement. We conclude by providing guidance to authoritative sources on how they may optimize specific types of engagement: retweets for information propagation, replies for in-depth sense-making, and favorites for cross-purpose visibility.
|
|
Long, Z., McCreadiem, R., & Imran, M. (2023). CrisisViT: A Robust Vision Transformer for Crisis Image Classification. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 309–319). Omaha, USA: University of Nebraska at Omaha.
Abstract: In times of emergency, crisis response agencies need to quickly and accurately assess the situation on the ground in order to deploy relevant services and resources. However, authorities often have to make decisions based on limited information, as data on affected regions can be scarce until local response services can provide first-hand reports. Fortunately, the widespread availability of smartphones with high-quality cameras has made citizen journalism through social media a valuable source of information for crisis responders. However, analyzing the large volume of images posted by citizens requires more time and effort than is typically available. To address this issue, this paper proposes the use of state-of-the-art deep neural models for automatic image classification/tagging, specifically by adapting transformer-based architectures for crisis image classification (CrisisViT). We leverage the new Incidents1M crisis image dataset to develop a range of new transformer-based image classification models. Through experimentation over the standard Crisis image benchmark dataset, we demonstrate that the CrisisViT models significantly outperform previous approaches in emergency type, image relevance, humanitarian category, and damage severity classification. Additionally, we show that the new Incidents1M dataset can further augment the CrisisViT models resulting in an additional 1.25% absolute accuracy gain.
|
|
Wang, D. (2023). Public Cognition and Perception on Social Media in Crisis. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 1081–1082). Omaha, USA: University of Nebraska at Omaha.
Abstract: Microblogging platforms have been increasingly used in crisis, facilitating more participatory communication between official response channels and affected communities. Despite the potential benefits, research has shown that disaster response organizations could not effectively utilize social media data due to data deluge (Knox 2022). To better understand the information needed for disaster response, we turn to the National Incident Management System Guidance for public information officers (PIOs) (NIMS Basic Guidance for PIOs 2020), the primary spokesperson for emergency management organizations. The guidance indicates that PIOs use social media for two major purposes, supporting their operational needs and gauging public perception of risk and incident response. To support the operational needs, the crisis informatics literature has heavily focused on information types supporting situational awareness, including serviceable, eyewitness or actionable information. However, the information representing public perception, such as people’s cognitive and perceptual processes in response to incidents, has been less addressed at scale. To bridge the gap between quantitative study in crisis informatics and information representing cognitive and perceptual processes and better support the task of PIOs, I focus on the study of people’s cognitive and perceptual processes on social media for my research. Cognitive and perceptual processes refer to the way that people pay attention to or process environmental inputs, including the mental activities of acquisition, processing or evaluation of environmental cues, social cues, and warnings. These processes reveal people’s perception of- and decision-making in response to potential threats. With this focus, I seek to answer the following research question: How could people’s cognitive and perceptual processes be inferred from their social media activities in crisis to benefit stakeholders in incident response? My interest in tracing this overall theme through a varied range of sub-tasks produces three more specific research questions: RQ1. How can information exposure and attention be operationalized to highlight cognitive and perceptual processes? RQ2. How do people’s perception of risk communications from stakeholders vary in crisis? RQ3. How could a principled and scalable pipeline be designed to identify people’s cognitive and affective perceptions on Twitter? I took cues from the Protective Action Decision Model (Lindell and Perry 2012) and leveraged baselines in the literature to address these research questions. To address the first research question, I proposed a metric that conceptualized and operationalized the predecision process. The proposed metric was incorporated into a pipeline and applied to two real-word events to recommend messages that represent the shift of collective attention of those locally affected with a specialized focus on cognitive and perceptual processes. To address the second research question, I went beyond the perception of risks to include perceptions of risk communications by stakeholders. I performed an empirical study of the relation between risk communications by stakeholders and different kinds of public perceptions (Lindell and Perry 2012). To address the third research question, I proposed a future work to provide benchmark coding schemes, datasets and models to quantitatively identify information representing cognitive and perceptual processes. I will leverage existing benchmark datasets in the literature (Olteanu et al. 2014; Imran et al. 2016; Alam et al. 2018; Zahra et al. 2020; Rudra et al. 2017; Mazloom et al. 2018; Purohit et al. 2018) and coding schemes in qualitative studies (Trumbo et al. 2016; Demuth et al. 2018) and create benchmark classification models.
|
|
Rahman, S., Ramakrishnan, T., & Ngamassi, L. (2023). Social Media Use for Disaster Management by Underserved Communities: A Uses and Gratification Theory Perspective. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (p. 1074). Omaha, USA: University of Nebraska at Omaha.
Abstract: Social media has emerged as a useful disaster management tool. However, studies indicate that not all individuals are equally inclined towards using social media for managing disasters. Underserved communities have not been able to reap the benefits of social media for disaster management to its full potential. We draw on the Uses and Gratification Theory and the literature on disaster vulnerability of underserved communities to develop a conceptual model. In our poster, we make five propositions in order to examine the motivating factors for the underserved communities to use social media for disaster management.
|
|
Ramakrishnan, T., & Zou, L. (2023). Investigating the Role of Digital Divide and Social Media Use (SMU) to Improve Disaster Resilience in Vulnerable Communities. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (p. 1073). Omaha, USA: University of Nebraska at Omaha.
Abstract: Disasters are unexpected large-scale events accompanied by trauma, death, and destruction. Disaster resilience varies by location and can be significantly improved through effective management. Real-time information describing the on-site impacts of disasters plays an important role in managing disasters. Social media provides a convenient platform where users in disaster-affected areas can access disaster information, report local damages, and ask for assistance. However, a widespread spatially uneven flow in online activities requesting for food, shelter, and medical assistance among people in disaster-affected areas through social media is seen during any disaster. Digital divide Influences social media use. Before probing the social media data for inspecting the affected population and prioritizing the relief operations, the social inequality in the social media use has to be considered. In this study, we examine the role of digital divide and its influence in social media use with aim of improving disaster resilience in vulnerable communities.
|
|