Chanthujan Chandrakumar, Raj Prasanna, Max Stephens, Marion Lara Tan, Caroline Holden, Amal Punchihewa, et al. (2023). Algorithms for Detecting P-Waves and Earthquake Magnitude Estimation: Initial Literature Review Findings. In V. L. Thomas J. Huggins (Ed.), Proceedings of the ISCRAM Asia Pacific Conference 2022 (pp. 138–155). Palmerston North, New Zealand: Massey Unversity.
Abstract: Earthquake Early Warning System (EEWS) plays a major role during an earthquake in alerting the public and authorities to take appropriate safety measures during an earthquake. Generally, EEWSs use three types of algorithms to generate alerts during an earthquake; namely: source-based, ground motion or wavefield-based and on-site-based approaches. However, source-based algorithms are commonly used in most of EEWSs worldwide. A source-based EEWS uses a particular time frame of the P-wave of an earthquake to estimate the source parameters such as magnitude and the location of that earthquake with the support of P-wave detection and earthquake magnitude and location estimation algorithms. As the initial step of a research project which aims to explore the best use of P-waves to generate earthquake alerts, this Work in Progress paper (WiPe) presents the initial partial findings from an ongoing literature review on exploring the algorithms used for P-wave detection and earthquake magnitude estimation.
|