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ABSTRACT

During natural disasters, automatic information extraction from Twitter posts is a valuable way to get a better
overview of the field situation. This information has to be geolocated to support effective actions, but for the vast
majority of tweets, spatial information has to be extracted from texts content. Despite the remarkable advances of
the Natural Language Processing field, this task is still challenging for current state-of-the-art models because they
are not necessarily trained on Twitter data and because high quality annotated data are still lacking for low resources
languages. This research in progress address this gap describing an analytic pipeline able to automatically extract
geolocatable entities from texts and to annotate them by aligning themwith the entities present inWikipedia/Wikidata
resources. We present a new dataset for Entity Linking on French texts as preliminary results, and discuss research
perspectives for enhancements over current state-of-the-art modeling for this task.
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INTRODUCTION

When a natural disaster occurs, the main issue is to make sense of what is going on, with the necessity to be able
to qualify the severity of the situation and to follow its evolution over time. Response organizations address this
issue by collecting as much information as possible in order to increase their “situational awareness” and to build a
realistic “common operational picture” on which to undertake effective actions. After having considered for a long
time that the only exploitable data for disaster management should come from specialized services guaranteeing their
reliability and their technical quality, the experience of recent years has shown that citizen data could allow - when
well exploited - to bring additional knowledge and to build better targeted response (Kaufhold 2021). Federating
communities of users accustomed to daily comment events on live, social media channel the data of millions of
connected “citizen sensors” (Goodchild 2007) endowed with five senses, able to share testimonies spontaneously
and quickly. In practice, the richest information usually comes from those citizens being closest to the area affected
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by the disaster. Because the natural disaster affects their immediate environment, these “local citizens” (Grace
et al. 2017) are indeed more inclined - both in the physical and digital spheres - to help or to exchange objective
information on the field situation (Akter and Wamba 2019; Starbird et al. 2012). The latter tend to exchange
information on the effects of disasters, victims or other types of useful information, while populations farther away
from events relay this information, or express their empathy to the victims (Olteanu et al. 2015). For these reasons,
monitoring and analysis of social media has become at the heart of the concerns of crisis managers (Rasmussen
and Ihlen 2017), especially Twitter. Although it is not the most widely used social media, the Twitter platform
present particularly useful features for reporting and monitoring natural disasters such as publication of short
messages in real time, free streaming Application Programming Interface (API) making it possible to automate
monitoring tasks (Auclair et al. 2019), and ability to attach pictures. Its real-time monitoring and analysis may turns
in delineating rapidly the extension of the area impacted by an earthquake (Fayjaloun et al. 2021) or a flood (Arthur
et al. 2018), or identifying emergency situations of interest for the rescue or security forces (Qadir et al. 2016;
Z. Wang and Ye 2018).

As such, several works considering information extraction for natural disaster crisis management tried to place their
results on a map to make it directly usable (Stanek and Drosio 2012; Zhang et al. 2016) or advocate for alternative
way to build those maps such as crowdsourcing mapping (Hunt and Specht 2019). A very low proportion of tweets
have an intrinsic geolocation (less than 1%), like GPS coordinates (Cheng et al. 2010). Consequently, geolocation
of the information should be inferred from the information present in the text and/or the metadata of the tweet itself.
This can be done thanks to the recent advances in Natural Language Processing (NLP) allowing to extract accurate
word representations, in a vectorial form, from raw text. These vectors, or word embeddings, hold precious semantic
and syntactic latent features, including geospatial features. While the first word embedding approaches resulted in a
fixed set of vector for a given vocabulary (Mikolov et al. 2013; Pennington et al. 2014), modern approaches (Devlin
et al. 2019) propose to first train a generic model and then to fine-tune it on any downstream task. Among others,
works have been carried out to fine-tune such systems to solve the well-known Named Entity Recognition (NER)
and the Entity Linking (EL) tasks. The first one aims to detect and classify named entities, such as persons or
organizations, in running text, while the second one aims to disambiguate these entities by linking them to an
identifier, usually a node in a Knowledge Base (KB). This allows enriching the text with external information which
can help either an automated system to provide a better prediction or a human agent to better understand, or to
refute, the outputs of such systems.

In this work, we propose to apply EL on toponyms, or any geolocatable entity, mentionned in tweets written during
crisis such as earthquakes or floods. We use gazeteers, such as OpenStreetMap, as target for our EL system. Such a
system should enable end-users to collect fine to coarse grained information about the spatial entities mentioned
in a tweet, such as, most importantly, its coordinates on Earth, but also its area or its population. Depending on
these information, rescue teams may behave differently. For instance, an intervention in a densely populated city
center does not require the same human and material resources than another one in a less populated residential
neighborhood. However, training such a system requires quite a large annotated corpus, which makes solving
this task a real challenge, especially when dealing with French tweets. Indeed, French resources tend to be less
numerous than their English counterparts. This is why we first tackle the problem of collecting and annotating a
French corpus dedicated to the Entity Linking (EL) task. Due to the scarcity of geotagged tweets, collection and
annotation must be made manually, which is heavily resources consuming. Following a long line of works (Logan
et al. 2019; Merity et al. 2016; Bunescu and Paşca 2006), we propose an automated alternative using hyperlinks in
Wikipedia pages as a supervision signal.

Such a dataset would probably not fit Twitter data, therefore we plan, in a second time, to augment our dataset with
Twitter data. Nevertheless, it has already been shown that deep neural networks can be effectively pre-trained on a
generic task then fine-tuned to fit other, more specific, tasks, the most obvious example being BERT. Rajapaksha
et al. (2021) successfully trained large Transformer models to detect clickbait on Twitter data even though the base
pre-trained models were not necessarily trained on Twitter. Also, J. Wang et al. (2020) showed that augmenting a
Twitter dataset with data from Wikipedia had a positive impact on the predictive performance of their system. We
will first do a quick review of works proposing solution to extract spatial features from raw texts. Then, we will
show the benefits of an EL system over the others and we will describe the process we used to automatically build
our annotated dataset for EL. Finally, we will introduce our system architecture, which should fix some limitation of
current state-of-the-art approaches.

RELATED WORKS

Since the recent advances in Natural Language Processing (NLP), Named Entity Recognition approaches have been
mostly relying on deep learning architectures (Li et al. 2020). Modern neural architectures produce contextual
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representations of words, that can be leveraged to classify token and identify those representing spatial named
entities, yielding state-of-the-art results. The most famous approaches are BERT (Devlin et al. 2019) and ELMO (Peters
et al. 2018), which rely, respectively, on the Transformer (Vaswani et al. 2017) and LSTM architectures (Gers et al.
2000). Spatial Named Entity Recognition is a popular subtask of NER that can be performed with the same neural
architectures but requires dedicated annotated corpora for training and testing. J. Wang et al. (2020) relied on a
subset of Wikipedia to generate automatically a dataset to train a toponym recognition model. They trained a model
on this dataset, another on the WNUT2017 Twitter Dataset (Derczynski et al. 2017), and a last one on both. They
evaluated their models on a Twitter dataset extracted during Hurricane Harvey, in 2017, and showed that the model
trained on Wikipedia performs worse than the model trained on WNUT2017. However, using data from Wikipedia is
far from useless since the models trained on both corpora surpass them by a large margin.
These architectures can be further specialized and fine-tuned for geotagging purposes. This means associating
the tokens representing a spatial named entity, no longer with a class label, but either with predicted geographical
coordinates or with the identifier of a geographical entity of known location listed in a gazetteer. In both cases,
leveraging the contextual distributed representations of toponyms produced by modern language models may
prove especially useful. Indeed, toponyms often refer to multiple places in the world, for instance, five French
municipalities are called Chaumont. Previous works in the field of spatial entity resolution, either based on
supervised approaches or not, have shown the benefits of using contextual knowledge (nearest neighbors, spatial
relations, popularity, importance, etc. . . ) for place names disambiguation. BERT or ELMO based language models
have been pre-trained and made available for many languages. Geotagging systems can hence be derived from such
models.
Approaches for geographic coordinates prediction or geographic region classification. The quality of the
results of gazetteer-based approaches depends strongly on the quality of the input gazetteer, and in particular on its
completeness. To overcome this difficulty, especially for areas where few location data are available, many text
geotagging approaches propose to first discretize the surface of the Earth, or the studied area, into cells. In this
context, the geotagging task is a classification task with 𝑛 classes, 𝑛 being the number of cells. Early approaches
of that kind, are presented in the survey proposed by Melo and Martins (2017). More recently, deep learning
architectures have been proposed to solve this classification task, like in Gritta et al. (2018) or in Yan et al. (2021).
In both approaches, some geographical knowledge is introduced by feeding the model with the same spatial grid
where each cell is filled with knowledge regarding the candidate geographic entities: in the former, the candidates
population count is added, in the later it is the frequency of co-occuring place mentions. None of these approaches
can predict an exact location, since their theoretical precision is bound to the cell size, even though it is often the
coordinates of the cell’s barycenter that are given as results. This can be somehow mitigated by modulating the
cell size according to some criteria: for instance, it seems reasonable to set a smaller cell size in an area densely
populated. This kind of approach can also be used to predict a vague location that can then be leveraged by another,
more precise, geotagging method. Such an approach is proposed by Cardoso et al. (2022). A first deep learning
architecture is used to predict a probability distribution over geo-spatial regions in a hierarchical spatial grid and
this result is then combined with the centroid coordinates of the grid cells and a second loss function to predict
geographical coordinates.
Gazetteer-based approaches. The last kind of geotagging approaches takes advantage of gazetteers, such as Open
Street Map1 (OSM), Geonames2 or BDTOPO ®3. Gazetteers store the names of any type of geographic entity,
such as cities, streets, lakes or buildings, with at least a spatial reference alongside (i.e.: coordinates, a geometry,
etc. . . ). Further information regarding geographic entity properties may be added, like their nature, their geometric
properties, their population, etc. Such information, providing some contextual knowledge about geographic entities,
may reveal useful for place name disambiguation. That is why many works have focused on gazetteer construction
to improve spatial named entity linking results (Overell and Rüger 2008; Brando et al. 2015; Spitz et al. 2016; Kim
et al. 2017; Ardanuy and Sporleder 2017). Besides, gazetteers may provide very accurate location information for
each place name, which can be crucial for emergency response applications. Predicting such geographic entities is
the same as solving Entity Linking (EL), a task consisting in aligning text and entities from knowledge bases. Most
of the previous works have focused on unsupervised approaches based on two steps :

• Candidates selection: For each spatial named entity mention, this step aims at selecting the most similar place
names in the gazetteer. It is mostly performed with string similarity measures (Recchia and Louwerse 2013).

• Candidates ranking: This step aims at finding, among the selected gazetteer entries, the most likely to be
represented the same place as the spatial named entity mentioned in the text. This is performed either by

1https://www.openstreetmap.org/
2http://www.geonames.org/
3https://geoservices.ign.fr/documentation/donnees/vecteur/bdtopo
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applying a set of heuristics based on geographic entity distances (Habib and Keulen 2012; Derungs and
Purves 2014; Blank and Henrich 2015), their spatial relations (Kim et al. 2017; Paris et al. 2017), their
importance (Amitay et al. 2004; Brando et al. 2015) or with approaches implementing supervised learning
algorithms, like SVM or LambdaMART, with hand-crafted features to describe spatial named entity mentions
and geographic entities listed in the gazetteer (Martins et al. 2010; Daiber et al. 2013; Speriosu and Baldridge
2013; Santos et al. 2015). Many works use a corpus built from the English Wikipedia to train their learning
algorithm.

More recently, some approaches have tried to solve this task with deep-learning-based classification methods.
Xu et al. (2019) proposes DLocRL, a deep learning pipeline for locations recognition and linking in tweets, that
computes a matching score between a given tweet and a location profile built from geographic data extracted from
Foursquare4. They also add a post-processing step based on a Geographical Pair Linking algorithm that leverages
the geographical coherence between co-occurring spatial entity mentions. To overcome the limitation due to the
overwhelming number of classes, some works propose to train two classifiers — the first one receiving the text
containing (spatial) entities and the second one the features of the (spatial) entities to predict — in parallel to predict
the same spatial embedding (Botha et al. 2020).

Whatever the strategy adopted, there are two major challenges for geotagging applications based on deep learning:
integrating geographical knowledge into the model and building an appropriate corpus to train the model.

USING WIKIPEDIA TO TRAIN A SPATIAL ENTITY LINKING PIPELINE

As suggested in the previous section, predicting entities from KB or gazeteers, such as OSM, would have several
benefits. Amongst them, gazeteers store many precious information that could be extremely valuable in case of an
emergency, such as, for instance, the height of a building or the presence of a gas pipe near in a damaged area.
Unfortunately, there are very few datasets mapping text spans to OSM entities, making it impossible to train an
EL system to predict OSM entities. Actually, to the best of our knowledge, such mappings exist only between the
couple Wikipedia/Wikidata. For that reason, Wikipedia and Wikidata are ideal resources to train EL systems, since
all Wikipedia pages have a corresponding entity in the Wikidata graph. One can use the internal hyperlinks in
Wikipedia pages to train a system to (1) detect entities, since they are identified by hyperlinks, and (2) align them to
the Wikidata graph. Actually, many works have been relying on Wikipedia to extract supervisions signals from
hyperlinks (Botha et al. 2020; Merity et al. 2016; Ghaddar and Langlais 2017; Nothman et al. 2013), but only
a few uses the French Wikipedia. Other works have been using Wikipedia to train models capable of resolving,
specifically, toponyms and others geolocatable entities (Martins et al. 2010; Geiß et al. 2015). In the case of a
spatial entity, the Wikidata graph often contains links to other geospatial databases, such as GeoNames or OSM,
making it possible to retrieve fine-grained spatial features. Even if the Wikidata entity lack these links, spatial
features can, most of the time, be retrieved directly from the Wikidata KB.

However, models trained on Wikipedia may not be well-suited to deal with social network data, since Wikipedia
pages and social network posts generally do not share the same writing style. It is still possible to alter the Wikipedia
pages, for instance by randomly removing or swapping characters, or changing cases, which should make the model
more robust. But such alterations could conflict with the model’s tokenization methods, which could results in a lot
of <unk> token (J. Wang et al. 2020), which does not hold any useful information. Furthermore, such artificial data
augmentation are not sufficient since they cannot generate data with the same vocabulary and slang used on social
networks. That being said, the lack of annotated social network corpora, especially in French, will inevitably force
us to rely on the Wikipedia dataset, since it is the only publicly available corpus with direct mappings between
entities and text spans. Nevertheless, Wikipedia is insufficient on its own. As pointed by J. Wang et al. (2020), the
best performances are obtained with a combination of the Wikipedia dataset and a small social network dataset,
WNUT2017 (Derczynski et al. 2017).

Building an Entity Linking dataset automaticaly

The Wikimedia foundation provides dumps of Wikipedia5 and Wikidata6. The Wikidata dump consists in a big
JSON file whose size is approximately 70GB as of November 2021. It is relatively easy to read since it is encoded
as a single JSON array and entities can be processed incrementally by reading the file line by line. Hence, to process
the file, one needs to read the dump line by line and parse the JSON string to get a representation of the current

4https://foursquare.com/
5https://dumps.wikimedia.org/
6https://www.wikidata.org/wiki/Wikidata:Database_download
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Wikidata entry. The sole difficulties lie in understanding the Wikidata architecture, which is not really user-friendly,
and in processing efficiently and quickly such a large dataset.

The Wikipedia dumps are released as separate XML files: one per language. The French Wikipedia dump, as of
November 2021, is around 5.1GB. Being plain, standard, XML, the dump is quite easy to read too, although, as we
will see in the following, it is not really usable. Indeed, Wikipedia pages are written in a specific language, the wiki
markup language, also known as wikitext or wikicode. This language is known to have no clearly defined syntax and
extensively rely on (nested) templates expansion, making it extremely difficult to write a reliable parser7. Indeed,
previous work shows that standard parsing methods could not reproduce the expected Wikipedia output (Dohrn and
Riehle 2011). As a consequence, researchers seeking to leverage the Wikipedia corpora only can use unreliable
tools. Currently, WikiExtractor (Attardi 2015) seems to be the most used software to extract text from Wikipedia
dumps, despite that a lot of texts were removed because the tool could not handle some templates from the French
Wikipedia dump. Wikitextprocessor8 seems to be a very promising tool since it is capable of expanding
templates much more reliably, at the cost of an non-negligible increase in processing time. However it does not yet
handle non-English Wikipedia dumps, so it is not suitable for applications on other languages.

We also explored solutions using the Wikipedia API. Indeed, it is possible to retrieve the wikitext of a page using the
API, then ask the API to do template expansion on the wikitext. However, the template expansion API is limiting
the size of its input, and rate limits disallow making too much queries. These limitations could be bypassed by
hosting our own Wikipedia instance. While running a Wiki instance is made easy by using the official Docker
image, importing the whole Wikipedia dump is not feasible in a reasonable time frame since development of the
import tool have been abandoned9.

In the end, we did not have much choices but to rely on the HTML output of the Wikipedia website. However,
scrapping the whole website is excluded since it would take too much time, and it would be inappropriate regarding
the number of queries made to the Wikipedia web server. Furthermore, we do not need the full Wikipedia corpus
since we aim working with social network data. Hence, training a model on the entire Wikipedia corpus may
introduce biases into the system, making it inefficient on social network data. So, we extracted a small subset of the
French Wikipedia corpus following the same scheme as Merity et al. (2016). Using Pywikibot, we extracted the
list of featured and good articles, which are articles tagged as being well-written by real users from the Wikipedia
community. This resulted in 6027 articles, as of January 2022. We then scanned these pages in order to extract
links to other Wikipedia pages. These links are very important, since we will use them as gold reference to train our
Entity Linking system. As we intend to use a system similar to the one proposed by Botha et al. (2020), we also
need a short description per entities. So, we also downloaded the pages referring to the entities we extracted from
the 6027 featured and good articles, resulting in 336 743 articles, from which we extracted the first paragraph since
it is supposed to be a short description of the page, according to the Wikipedia’s guidelines10.

Not so much cleaning was necessary to make the HTML pages usable, since most of the work have been done by
the Wikipedia backend. We removed everything that is not raw text, such as tables and pictures and replaced the
mathematical formula by the textual representation, provided by Wikipedia, intended to text-based web browser.
We also removed common sections, such as “references” or “see also” sections, which we think are irrelevant for
most of the use-cases. Finally, we tagged the links with [E] tags. For instance, if a link to the page Paris with the
text “Ville lumière” (City of light) is found, it is replaced by the string “[E=Paris]Ville lumière[/E]”. This allow to
preserve both the original text, as well as the title of the linked page.

For each page we extracted from Wikipedia, we also extracted the following properties from the linked Wikidata
entity:

QID A string identifying a Wikidata entity. For instance, the QID of Paris is Q90.

Description A short description of the entity. Not always reliable.

Label The name of the entity. For instance the label of the entity Paris is “Paris”.

Aliases A list of aliases for the entity. For instance, both “Paname” or “Ville-Lumière” refer to the entity Paris.

Type A suggested type for the entity. One of “GEOLOC”, “ORG”, “PERSON”, “DATE” or “OTHER”.

7https://utcc.utoronto.ca/~cks/space/blog/programming/ParsingWikitext
8https://github.com/tatuylonen/wikitextprocessor
9https://www.mediawiki.org/wiki/Manual:MWDumper
10https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Lead_section
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Entity Type Count Instances

PERSON 85 670 301 714
GEOLOC 98 749 552 583
ORG 2180 13 849
DATE 2024 38 816
OTHER 116 118 712 683

Table 1. Number of distinct entities’ types as well as their appearance in the corpus.

The Type property is not extracted directly from Wikidata. We built an ad hoc set of rules to predict the type of
an entity. These rules check the presence of some properties in the entities. For instance, the entity Paris is an
instance of (property P31) of the entity Capital (whose QID is Q5119). Then, it is probably a spatial entity, so we
set the value “GEOLOC” to the Type property. The number of instances of each entity type is shown in Table 1,
but the data extracted from our set of rules has not yet been audited, so we do not recommend relying on it for a
production system. Our classification probably needs further refinement considering the high number of “OTHER”
entities.

We released our dataset on the HuggingFace hub11. It contains 6023 documents and 304 826 distinct entities.
Among the 37 051 326 words, 2 913 959 are part of an entity (an entity can be made of multiples words). A total of
1 619 961 entities have been annotated. The scripts we used to produce this dataset are available as a Git repository12.
Currently, the scripts are specific to the French Wikipedia, since some links are hard-coded, as well as the name of
the sections to remove during the cleaning phase. However, it should not be too difficult to edit the scripts in order
to make them work with any language.

A PIPELINE FOR NAMED ENTITY RECOGNITION AND ENTITY LINKING

We build a system heavily inspired from the work of Botha et al. (2020). This system encompass two Transformer-
base encoder trained conjointly to produce similar outputs. The first encoder is called the mention encoder and the
second one the entity encoder. In the original work, the mention encoder takes as inputs the title of a Wikipedia
page and a sentence from the same page, in which one entity is tagged. The entity encoder takes as input a textual
description of the tagged entity. Their system achieve impressive results, especially considering that it was able to
produce accurate representations for many languages, even on languages on which it has not seen during training.
However, we argue that this system, as is, is not well-suited for real-world applications. First, the system can only
process sentences from Wikipedia, since the Wikipedia title is a part of its inputs. As such, it may be difficult to use
this system on Twitter data. Second, the system can compute a representation for a single entity that has to be
tagged beforehand. Hence, this system has to be used in conjunction with an accurate Named Entity Recognition
(NER) system. Yet, we think that doing both NER and EL in the same time may be preferable because it may reduce
both the size of the model and processing time. Indeed, the dual encoder architecture is already heavy, since it
encompass two distinct BERT models13. Adding a third system to do NER would increase significantly the size and
complexity of an already complex architecture.

To alleviate the two mentioned limitations, we first propose to not rely the mention encoder on Wikipedia specific
features, such as the title of a page. In this case, the mention encoder takes only text as input. Second, the mention
encoder should not be limited to only one entity per input sentence and be designed to (i) detect any Named Entities
and (ii) compute Entity embeddings for each of them. In this configuration, the system has to be trained to minimize
the following dual objective:

𝑁𝐸𝑅(𝑜𝑛𝑒𝑟 , 𝑦𝑛𝑒𝑟 ) + 𝐸𝐿(𝑚𝑒𝑙 , 𝑒𝑒𝑙) (1)

Where 𝑜𝑛𝑒𝑟 are the predicted NER labels, 𝑦𝑛𝑒𝑟 are the expected NER labels, 𝑚𝑒𝑙 are the output entity representations
from the mention encoder and 𝑒𝑒𝑙 are the output entity representation from the entity encoder. The 𝑁𝐸𝑅 function is
the classical cross-entropy loss and 𝐸𝐿 is a loss function based on the cosine similarity.

CONCLUSION

Geotagging social network posts requires to be able to extract accurate and relevant spatial features from raw text.
Several strategy exists, and we chose to train entity embeddings by leveraging links found in Wikipedia pages. In

11https://huggingface.co/datasets/gcaillaut/frwiki_good_pages_el
12https://github.com/GaaH/frwiki_good_pages_el
13We suppose this is why the authors use only the four first BERT’s layers
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this work, we propose a set of open-source tools to automatically scrap data from Wikipedia and annotate them
using links found in Wikipedia articles. We also release a French dataset from the featured and good articles with
both NER and EL annotations.

While we do not have, yet, experimental results, we propose nevertheless further developments of the method
proposed by Botha et al. (2020) to make it more suitable in real-world applications since it does not rely specifically
on Wikipedia metadata (such as the page’s title) nor requires entity annotations. Experiments need to be carried out
to validate our proposed pipeline.

Future works will be dedicated to extending our dataset. First, we will manually annotate a set of French tweets
extracted during natural disaster events, such as the Alex storm that hits France in September 2020. Such efforts are
critical, since, as stated previously, a good system trained only on Wikipedia (or any mainstream dataset) will have
difficulties performing evenly on a Twitter dataset. Second, we will improve the NER annotations, since, currently,
we provide only a few class labels for Named Entity tagging and these annotations are given by an ad-hoc set of
rules.

Finally, we plan to integrate time related features into our modeling. Indeed, people are likely to post messages
about a specific event, such as an earthquake, in the same time span as the event. This could enable clustering
online posts around a shared event and help the disambiguation of some spatial entities by leveraging knowledge
extracted from other posts in the same cluster.
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