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ABSTRACT 

Supervision of technical dives is particularly important in emergency and disaster response operations to ensure 

the safety of divers in unexplored locations with uncertain conditions. Diver monitoring relies primarily on voice 

communication and a video stream that gives the operator a first-person view of the diver. However, in many 

cases underwater visibility can drop to just a few centimeters, leaving the diver only able to feel his way with his 

hands and the operator depended only on voice communication, making it very difficult for both of them to 

identify upcoming hazards. In the DeeperSense research project, we are attempting to reduce the limitations 

caused by poor underwater visibility by using a sonar in combination with an AI-based algorithm designed to 

translate the sonar signal into a visual image that is independent of the turbidity of the water and gives an overview 

of the situation where the eye can no longer see anything. Laboratory results show that visual information can be 

recovered from sonar data. 
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INTRODUCTION 

In many underwater applications, technical divers are still indispensable when it comes to maintenance and 

inspection. Industrial divers regularly have to work in dangerous situations, but with good planning of the dives, 

only a controllable residual risk remains. Technical diving in civil protection and emergency response operations, 

however, presents different challenges as the situation at the place of action is often unknown and the risk level 

sometimes has to be assessed during the dive. In contrast to recreational divers who primarily target environments 

with good visibility and lighting, industrial divers mostly face low visibility situations that make navigating, self-

locating and finding objects or recognizing hazards difficult. 

To alleviate these difficult circumstances, industrial divers are assisted by an on-land operator who monitors the 

diver’s activities and helps anticipate upcoming dangers. The operator has a voice link with the diver and receives 

a 1st person view by a camera that is attached to the diver’s helmet. By this means, the operator can discuss next 

work steps in consultation with the diver and alert him if he notices any discrepancies or emerging dangers, while 

the diver can focus on the task at hand. Technological advances in the past decades helped to further improve the 

monitoring of the diver through the use of small remotely operated vehicles (ROV), which have become 
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increasingly available on the market. In some cases, ROVs are used to get a 3rd person view of the diver and enable 

the operator to get a better overview of the situation and to support the diver more actively. However, while this 

strategy works well to enable productive work and mitigate risks, it is mainly based on visual input that depends 

on the turbidity of the water. Even if visibility is good at the beginning of the dive, activities performed by the 

divers often cause the turbidity of the water to increase and can lead to white-out situations in which the operator 

loses sight of the situation.  

Thus, the lack of visibility is a major problem in reliable diver monitoring. In order to overcome these limitations, 

sound waves can be used instead of light, because sound waves are not affected by the turbidity of the water. 

Sonar imaging is a state-of-the-art technology that has been improved over the last decades and high-resolution 

devices are available on the market that can be carried by a ROV and provide the ability to obtain a sonar image 

of the scene for monitoring. However, sonar images are often very hard to interpret even to a trained human eye 

and suffer usually from low signal-to-noise ratios. Therefore, we aim to use deep learning methods to learn a 

consistent association between sonar and optical camera images observing the same underwater scene. By this 

learned association the sonar input shall be translated into a realistic visual-like image, that can be easily 

interpreted by a human operator monitoring technical divers working in low visibility environments. 

Within the European research project DeeperSense, the described use case is being elaborated. The necessary 

training data for the deep-learning algorithm is generated in multiple diving sessions with technical divers of the 

German Federal Agency for Technical Relief (THW). The sessions are simultaneously recorded by an optical 

camera and a sonar by the German Research Center for Artificial Intelligence (DFKI) and industrial partner 

KRAKEN Robotik. As deep-learning methods require a huge amount of input data for training and testing of the 

algorithm, multiple realistic working situations will be staged by the divers in different locations and settings in 

order to prevent the algorithm from overfitting. After the training phase, the algorithm developed by the 

researchers of DFKI is being tested within application-oriented scenarios and it is evaluated whether the 

technology can add value for the application of diver monitoring in low visibility environments. 

RELATED WORK 

Underwater image enhancement and restoration has been an active field of research due to the difficulties marine 

environments pose for optical imaging. Phenomena such as marine backscatter reduces the contrast of an image 

and produces fogginess, floating organic matter known as “marine snow" could create occlusions, additionally 

the colors of light dissipate in the water with depth. 

Classical methods to improve the quality of underwater images generally involve techniques such as (1) noise 

filtering (Arnold-Bos, et al., 2005) (Bazeille, et al., 2006) (Jia & Ge, 2012), (2) color correction (Akkaynak, et al., 

2014) (Berman, et al., 2020), and (3) image dehazing (Treibitz & Schechner, 2009) (Berman, et al., 2016). 

In recent years, Deep Learning based methods for underwater image enhancement have been gaining more 

attention. A Generative Adversarial Network (GAN) was trained in (J. Li, et al., 2018) to generate underwater 

images from a pair of in-air optical and depth images. Their network was used then to generate a large dataset for 

training another image restoration network that predicts a color corrected underwater image. This method, 

however, only handles color correction and is not trained to remove haziness or restore images that are corrupted 

with floating particulate matter. 

This work proposes the use of GANs in order to recover underwater images that have been corrupted by adding 

blur and darkness. The GAN is trained to fuse a sonar image and the corrupted camera image in order to recover 

the original clear color image. 

MACHINE LEARNING CONCEPT 

The core idea behind the machine learning (ML) concept is to learn an end-to-end association between an imaging 

sonar and visual camera images observing the same underwater scene. This learned association would then be 

used to generate realistic visual-like images, given only sonar images as input or a combination of a sonar image 

and a dark or turbid visual image. The purpose is to provide images that can be easily interpreted by a human 

operator, even in bad visibility conditions, for example to monitor the status of a diver working in turbid or dark 

waters. 

In this work we propose the use of a class of ML algorithms known as Conditional Generative Adversarial 

Networks (C-GAN) (Mirza & Osindero, 2014), that has become popular in the literature for the tasks of image-

to-image translation (P. Isola, et al., 2017) and (Wang, et al., 2018). This network architecture is mainly composed 

of an encoder-decoder style Generator G(x) network that maps an input image to a desired target image by 
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minimizing the pixel loss between the predicted and real image. Additionally, a Discriminator network D(x) is 

trained simultaneously which randomly takes a generated image or the corresponding real image as input and tries 

to predict whether the given image is fake or real. In this case the input image acts as a condition that is imposed 

on the generator and discriminator inputs to compel the network to perform image translation tasks. 

For our use case, we use the sonar data and a camera image that has been blurred and darkened to simulate bad 

visibility conditions as input. Both inputs are first passed through a 3 x 3 convolutional layers and then 

concatenated. This is then passed into the generator network that is composed of a U-Net encoder-decoder 

architecture (Ronneberger, et al., 2015), with 7 up and downsampling CBR (Convolutional-BatchNorm-ReLU) 

layers. The discriminator network is composed of a PatchGAN (P. Isola, et al., 2017), see Figure 1: 

 

Figure 1: Diagram representing the CGAN architecture 

SENSOR SETUP AND DATA COLLECTION SESSIONS 

In the data collection sessions, the training data for the algorithm training is being generated. In every session 

there is a scene consisting of a diver performing technical underwater tasks and a set of sensors that are aligned 

to record the same field of view of the scene. The sensor set comprises a multi-beam imaging sonar, an optical 

stereo camera and an underwater laser scanner. The sensors are synchronized and record data simultaneously in 

order to obtain matching images of the scene from different modalities. The image of the optical camera is used 

as a ground truth for the visual-like image that shall be generated by the algorithm. In the initial phase of the 

algorithm development, no depth information from the stereo camera nor 3D laser scanner have been used for 

training, but data is collected for future iterations. A typical setup for data generation is shown in Figure 2: 

 

Figure 2: Data Generation Sensor Setup 
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This sensor setup was used in all data acquisition sessions with slight variations and it was either fixed on a 

floating platform or fixed at the basin wall. Between August 2021 and July 2022 four sessions were conducted, at 

three different locations in Germany: Two sessions under laboratory conditions at the Maritime Exploration Hall 

at DFKI-RIC in Bremen, one field session at the Kreidesee in Hemmoor, and one field session at a training basin 

in Neu-Ulm. In all cases, a typical underwater work environment for the divers was simulated, including 

workbench and tools. Divers performed various tasks such as assembling pipe flanges, tightening nuts and bolts, 

or building fittings. 

Laboratory sessions 1 and 2 in The Maritime Exploration Hall 

The Maritime Exploration Hall contains a saltwater basin measuring 23m × 19m × 8m, Figure 3 shows a diver 

entering the basin. The environment conditions in the Maritime Exploration Hall are stable and independent of 

the outside weather, the visibility is greater than 50 m.  

 

Figure 3: Maritime Exploration Hall 

The main goal of the laboratory sessions is to generate very clear optical images of the divers performing their 

work in order to obtain a high-quality ground truth. Therefore, it is important to have unrestricted visibility given 

by a minimum turbidity of the water. Furthermore, we aim for a homogeneous background to ensure that the diver 

and his equipment are the only visible objects in the scene. These optimal circumstances we encounter in the 

Maritime exploration hall, which is why it was chosen for the laboratory sessions. The only limitation is that we 

cannot carry out tasks that would pollute the pool and impair the visibility. 

For the first session the focus was to verify the overall setup of the data collection and therefore it was decided to 

only perform simple works like mounting pipe flanges, wrenching nuts and bolts and moving objects. Figure 4 

shows an example of the collected data as a matching pair of images that were taken by an optical camera and a 

Gemini 720i Sonar.  

 

Figure 4: Example of data collected during the first session. Left: RGB image from optical Camera. Right: Sonar 

image from Gemini 720i 
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A total of 12 hours of divers in action was captured during the first session. Looking at the results, it was found 

that the resolution of the sonar was too low for the purpose of identifying objects and thus an Oculus M1200d 

sonar was used for the second session yielding more detailed sonar images as shown in Figure 5: 

 

Figure 5: Left RGB image from optical Camera. Right: Sonar image from Oculus M1200d @ low frequency 

Similar tasks were carried out by the divers on the second lab Session, and another work was added in order to 

increase the variation of the recorded activities. The divers processed aluminum profiles with various electric hand 

tools and used them to build a chair. 

 

Figure 6: Left RGB image from optical Camera. Right: Sonar image from Oculus M1200d @ high frequency 

The Oculus M1200d was operated in two frequencies, a low frequency mode (1200 kHz) that covers a wider field 

of view and provides a longer range but with low resolution (Figure 5), and a high frequency mode (2000kHz) 

that offers a narrower field of view but higher resolution. Figure 6 shows an example of the sonar working in high 

frequency mode, yielding a very detailed picture of the scene, where some details can be witnessed in the raw 

sonar picture, such as the strong reflections from the aluminum chair and the diver lying on the ground. A total of 

9 hours of footage was created during the second session. 

For both sessions, Seavision laser scanner was used to collect 3D point clouds of the scene. Figure 7 shows on the 

left the camera images from Seavision and on the right point cloud created as the result of a triangulation of a 

laser line project onto the scene. 

 

Figure 7: Point cloud created by Seavision underwater laser scanner 

In addition to the point clouds, Seavision cameras were also synchronized with the other sensors and were used 

to collect optical images with a different point of view from the stereo camera system. In this work the point 

clouds were used to validate the ground truth data. 
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Figure 8: RGB point cloud of different body poses created by the Seavision laser scanner 

Field Session 1 at Kreidesee 

The first field session was conducted in a lake called Chalk Lake (Kreidesee) which is located in an abandoned 

chalk mine. It was selected because the visual range underwater is usually up to 25m, what gives us the opportunity 

to record high quality ground truth data in a more application-oriented environment using the optical camera. The 

THW divers set up their workbench and equipment on a submerged wooden platform with a 3m × 3m surface 

area that was fixed 50cm above the floor of the lake at a depth of 5m. A picture of the lake and the submerged 

platform is shown in Figure 9. 

 

Figure 9: Test setup at Kreidesee in Hemmoor with wooden platform 

The sensor setup for the lake was similar to the setup in the lab. The sensors were mounted on a rig that was fixed 

to a floating platform which was positioned to focus the wooden platform and held in place by ropes. An example 

of the sensor views is shown in Figure 10 where the wooden platform is clearly visible on the sonar image, which 

was set to low frequency mode as the sonar could not be moved close enough to the scene in order to be in range 

for the high frequency mode. 
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Figure 10: Left RGB image from optical Camera. Right: Sonar image from Oculus M1200d @ low frequency 

During several dives, a total of 14 hours of video and sonar imagery was collected including activities like 

mounting of pipe flanges and woodworking with several tools as shown in Figure 11. Several woodworking tools 

were used, hand tools such as wood chisels and hand drills as well as electrically and pneumatically operated tools 

such as drills, chainsaws and saber saws. The variety of tools was put into use in order to get as diverse a range 

of input data as possible and to identify any interference between the different tool noises and the sonar image. 

 

Figure 11: Tools used in Hemmoor session 

Aside from the workbench actions, special activities were performed such as swinging weights, and walking on 

and around the platform. It was intended to also generate some example material for works that generate dirt and 

increase the turbidity of the water. Therefore, the diver shoveled some dirt around the platform to increase the 

turbidity and also a bucket of mud was emptied over the diver to create a situation in which the diver's visibility 

was suddenly reduced to zero as shown in the picture sequence in Figure 12. 

 

Figure 12: Image sequence from left to right: Emptying a bucket of mud on top of the diver 

During the field session, some scans were also taken with Seavision underwater laser scanner. To maximize the 

signal to noise in shallow waters, the laser operation was performed at night. The distance from the Seavision 

cameras to the table was approximately 5m. Due to the distance to the target, the laser remission is better suitable 

for colorizing the point cloud. Figure 13 presents point clouds generated by Seavision with divers at two different 

body poses. 
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Figure 13: Point cloud generated by Seavision at approximately 5m distance from target. 

Field Session 2 in a diver training basin 

The second field diving session was conducted in a training basin in Neu-Ulm, Germany. The basin has the outer 

dimensions of 22m × 20m and a depth of 2,75m and the sensors were mounted to the basin wall as shown in 

Figure 14. 

The pool was chosen because the underwater visibility is about 2m to 3m and thus significantly lower than in the 

previous tests and represents a more realistic working environment for the technical divers, but still provides good 

visibility compared to what the divers usually encounter. Furthermore, the filtration system of the pool allows the 

introduction of debris through the work of the divers, allowing us to use the full range of underwater tools 

available. 

 

Figure 14: Test setup at Neu-Ulm 

Some of the tools that were put into action are shown in Figure 15, from bottom left to right: 

1. Drilling stone with hydraulic drill & core drill & electric drill 

2. Cutting wood with chainsaw 

3. Cutting concrete block with ring saw 

4. Cutting metal with PrimeCut 

 

Figure 15: Tools used in Neu-Ulm 

Since the scope of session was mainly geared towards data with low visibility, there was no data collection 

performed with Seavision laser scanner. 
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PRELIMINARY RESULTS  

In this section we present preliminary results using the algorithm described earlier. We used two datasets to train 

the aforementioned model: (1) an indoor dataset that was collected in the test basin of DFKI, and (2) an outdoor 

dataset which was collected at Hemmoor lake. 

For the first dataset, we used 3078 pairs of sonar and camera images that were temporally aligned. Here the high-

frequency mode of the Oculus sonar was used, and both the sonar and camera images were resized to 512 x 512 

pixels. To simulate the effect of turbidity or darkness, the input camera images were disturbed by applying a 

gaussian blur and darkness by varying the intensity factor from 0.2 to 1 (1 equals completely black). The model 

was then trained for 100 epochs using back propagation with a batch size of 8, and the ADAptive Moments 

(ADAM) optimizer with a learning rate of 2x10-4. The model was then evaluated on a separate test set from the 

same experiment. The data was split into a train/test sets, with 80% used for training and 20% for testing. Few 

examples of the results can be shown in Figure 16, where the first column from the left shows the sonar image, 

and the second column shows the disturbed camera image that was used as input. The third column shows the 

original ground truth image compared to the generated output of the model that is shown in the right most column. 

In this figure we demonstrate the performance of the trained model with increasing the effect of darkness and blur 

in the input camera image. One may notice that at darkness levels of 50% to 90%, the model is able to reproduce 

the original camera image with a high degree of detail. With the darkness pushed to the max, we can notice that 

some of the details in the generated image are lost, however the diver and the work bench are very clearly 

identifiable. 

 

Figure 16: Comparison between the real images and generated images evaluated on the indoor basin dataset 

For the second dataset, the imaging sonar was used with the low frequency mode which covers more range 

compared to the high frequency, but at the cost of reduced resolution. This was necessary as the distance to the 

diver was greater than in the pool. In this case we used pairs of 3328 training samples where both sonar and camera 

images were rescaled to 1024x512 pixels. The same procedure was used to train the model as in the case of the 

first dataset. Figure 17 shows the results of the model, where a noticeable degradation in the performance can be 

observed when compared to the indoor results. At 50% and 75% darkness, the generated image still highly 

resembles the original image, and the diver can be identified visually, however the generated image still suffered 

from blurring. At higher darkness levels, the generated image loses a lot of details and texture. 
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Figure 17: Comparison between the real images and generated images evaluated on the outdoor lake dataset 

We report the structural similarity index measure for both experiments in Table 1, which is a measure of the 

quality of the predicted images based on the original one. 

Table 1: SSIM indices for both indoor and outdoor experiments with varying darkness and blurring 

factor of the camera image 

Darkness/Blurring factor Basin dataset Lake dataset 

50% 0.9676 0.936 

75% 0.9715 0.9278 

90% 0.9680 0.9225 

 

Further investigation of these results is currently being undertaken to identify the reason behind the discrepancy 

between the lab and field data. One of the possible justifications might be contributed to the lower level of detail 

the low frequency mode of the sonar provides compared to the high frequency mode. As a next step, we plan to 

train on a larger dataset in an attempt to help improve the accuracy of the predicted images. 

CONCLUSION & OUTLOOK 

In this paper we describe the development of a system that enhances the possibilities for diver monitoring in turbid 

waters. For this purpose, the steps of data generation are described, which were carried out in great detail and care 

was taken to ensure that very heterogeneous data was obtained in different environments. It was shown that the 

C-GAN algorithm used is able to generate a visual image from the sonar data for data generated in a laboratory 

environment. Nevertheless, it was also shown that it is difficult to produce a good image when the sonar shows 

little detail in a field environment using the latest version of the algorithm.  

Therefore, in the further course of the DeeperSense project, we will focus on using the system in the optimal range 

of its capabilities. For the next tests, a ROV will be used as a sensor carrier so that the sonar can always be 

positioned at the optimal distance from the scene. 

With this measure and with an extended algorithm training, we aim to achieve positive results for field use by the 

end of the project. In addition, the data collected will be made available to the research community at the end of 

the project. 
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