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ABSTRACT 

Insight into performance ability is crucial for successfully implementing AI solutions in real-world applications. 
Unanticipated input can lead to false positives (FP) and false negatives (FN), potentially resulting in false alarms 
in fire detection scenarios. Literature on fire detection models shows varying levels of complexity and 
explicability in evaluation practices; little supplementary information on performance ability outside of accuracy 
scores is provided. We advocate for a standardized evaluation dataset that prioritizes the end-user perspective in 
assessing performance capabilities. This leads us to ask what an evaluation dataset needs to constitute to enable a 
non-expert to determine the adequacy of a model's performance capabilities for their specific use case. We propose 
using data augmentation techniques that simulate interventions to remove the connection to the original target 
label, providing interpretable counterfactual explanations into a model's predictions. 
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INTRODUCTION 

Wildfires cause tremendous damage globally. They destroy ecosystems, harm human lives and property, and 
pollute the air. Approximately 463 million hectares of forest are burned annually worldwide (Shi and Touge, 
2022). About 15% of the global greenhouse gas emissions into the atmosphere are resulting from wildfires. High 
temperature, dry soil and low air humidity increase the probability of their occurrence. Surface materials like 
grass, leaves and twigs usually ignite first, and once the fire spreads to the crowns of trees, it can be difficult or 
even impossible to control (Hirschberger, 2016). Therefore, early wildfire detection is of substantial use for 
firefighting. Traditionally, human observers detect wildfires (Guth et al., 2005). However, this is costly and 
inefficient as the area to be covered is vast. Technologies for automatic early wildfire detection are pivotal. 
Various AI-based solutions exist, e.g., detecting smoke or fire in images, evaluating satellite images, and analysing 
large temperature datasets.  

This paper is exclusively concerned with machine learning (ML) models that use smoke and fire images in the 
visible light spectrum. While human intelligence can label such images with almost impeccable accuracy, the 
classification with AI often leads to false FPs and false FNs. A phenomenon that leads to misclassifications in 
ML models is the presence of objects that are coloured like fire. Numerous supervised learning models for fire 
detection on images achieve high classification accuracy, some over 99% (Khan and Khan, 2022; Lee et al., 2017; 
Oh et al., 2020). However, it is hard to compare the performances of these algorithms since there is no consistent 
performance evaluation standard. The high accuracies these algorithms achieve on their respective test data give 
little insight into whether they would succeed in real-world applications. It is difficult for non-expert end-users to 
decide if an algorithm is reliable and secure enough for their use case. We aspire to describe an evaluation dataset 
that allows for a comparison between fire detection models. Such an evaluation dataset should provide insight 
into whether a model is reliable and secure. It should also be interpretable for non-experts without requiring access 
to a model's training data or architecture. 
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Reviewing existing wildfire detection models, we identified a common issue. Some features learnt to predict the 
labels are not causally related to fire. Such non-causal features can lead to FPs and FNs when the model tries to 
predict labels for out-of-distribution (OOD) images. This paper describes performance issues that arise when a 
model does not fully learn causal features. We suggest building a general evaluation dataset that gives insight into 
whether causal features have been learnt by answering “counterfactual” questions of the following form. What 
would the model predict if ... 

• … the fire’s texture is changed to the texture of metal?

• … the fire is shaped like a teddy bear?

• … the fire’s colour is pink?

Questions of this kind give insight into which high-level causal features the model uses for its predictions. We 
hope that the outlined general evaluation dataset can be built and then adapted as a benchmark, enabling the 
development of more stable models. The performance of the evaluation dataset would be easily interpretable. For 
instance, whether a model learns the colour of a fire, or its shape would be apparent by the predicted labels and 
the distinct content of the images. By linking data augmentation to “interventions”, we claim that we can create 
such a dataset. However, creating it will be part of future research.  

RELATED WORK 

Image-based Fire Detection Technology 

Modern technologies provide new solutions for the task of predicting and detecting wildfires. With the vast 
amount of data available, ML applications can be implemented to detect fires automatically. Input parameters for 
such ML applications include humidity, wind speed, temperature, season, time of day, the number of trees in an 
area and the composition of the forest surface (Calp and Kose, 2020; Castelli et al., 2015). However, this paper 
will focus on fire detection and ML algorithms that use images as training data. Images used to train models to 
come from different sources, including satellites, ground cameras and uncrewed aerial vehicles (UAVs) 
(Barmpoutis et al., 2020). Satellite images are utilised to identify environments from a considerable distance. This 
technology can cover a vast area (Giglio et al., 2016), but small fires are rarely visible in satellite images. These 
small fires are accountable for a significant proportion of the areas burned worldwide (Hu et al., 2021). In addition, 
the quality of satellite images is often affected by bad weather conditions, which can obscure vision. 

Stationary Ground Cameras automatically recording images in the forest are a complementary option. Many 
sensors and cameras are set up on elevated points such as towers (Mohapatra and Trinh, 2022). Such images 
complement the satellite images since they are closer to the ground and less likely to be obscured by bad weather 
conditions. However, fog, dust, clouds, and smoke can obscure the flames, even from ground cameras. This can 
lead to errors in the localisation of the fire or a poor estimate of the size of the affected area. Therefore, helicopters 
or aeroplanes approximate the extent of a wildfire. This is expensive and poses a risk to the people in aerial 
vehicles. Using UAVs reduces such risks while being less costly. Real-world wildfire operations have already 
been conducted with single vehicles or a fleet of multiple vehicles. Experiments have shown that UAVs are useful 
in firefighting scenarios by bridging the gap between measurements from satellite- and ground-camera-based 
systems (Merino et al., 2012; Srinivas and Dua, 2019).  

Figure 1. Images of smoke or fire are detected with satellites, ground cameras and UAVs. They record visible light, 
infrared light or utilise the LiDAR technology 
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All three technologies provide images a neural network can process to detect fire. However, not all pictures are 
recorded in a light spectrum visible to the human eye. Three categories of images are common: 

• Images in spectra visible to the human eye.

• Infrared images, including heat signatures.

• Light Detection and Ranging (LiDAR). This remote sensing method uses light as a pulsed laser that
reflects from smoke or other particles.

Automated Wildfire Detection Models 

This paper will exclusively consider images in spectra visible to the human eye. Human-performed visual 
interpretation of photos is time-consuming and costly. On the other hand, automated understanding of images by 
ML models is inexpensive and can significantly reduce the time spent on evaluations (Labenski et al., 2022). 
However applicable ML models are, many models predict FPs and FNs, which would not happen to humans. Such 
images include shadows from clouds, dust, fog or even human equipment such as vehicles, clothing or road signs 
(Alkhatib, 2014). Further FNs we found in the literature are images of wildfires in the background (Khan,  2022). 
Some FPs include autumn foliage lamps and car lights (Khan and Khan, 2022; Park et al., 2022; Sun et al., 2021). 
The model described by Field Park et al. (2022) can correctly identify many of the mentioned FNs and FPs. In 
most cases, the model can differentiate light emitted by lamps or cities from the light emitted from a fire at night. 
The authors used standard data augmentation methods like brightness, saturation, rotation and mirroring. They 
also used generative adversarial networks (GAN) to augment images from day to night, change the seasonality to 
winter, and create additional synthetic wildfire images. Lu et al. (2022) introduced a diagonal swap of random 
origin as a data augmentation technique. This improved their model's ability to detect small fires. Data 
augmentation techniques all serve the same purpose: expanding the domain, a model is trained on, by increasing 
the training data.  

Evaluating Wildfire Detection Models 

A significant amount of research on fire detection models needs more insight into the domain in which the model 
was trained. Furthermore, many research papers do not provide examples of FPs or FNs. Consequently, evaluating 
the quality of such models is difficult. Moreover, models are typically evaluated using data that is similar to the 
training dataset. For instance, if a model is trained exclusively on daytime images, its performance will likely be 
poor when tested on night-time images. However, the average accuracy will likely be high if no night-time images 
are included in the evaluation dataset. Several approaches have been developed in the field of explainable AI 
(XAI) to address this limitation of performance score evaluation. XAI aims to understand and interpret AI systems 
to provide insights into their trustworthiness, fairness, and robustness. We refer to Linardatos et al. (2020) for an 
extensive review of XAI approaches.  

Saliency maps and counterfactuals are example-based approaches within XAI that help identifying potential 
biases in a model's decision-making process. Saliency maps determine the most critical regions or features in an 
image used by a neural network to make a particular classification decision. This information can be used to 
explain why a specific image was classified in a certain way and helps identify potential biases in the network's 
decision-making process. Counterfactuals are used to explain why a neural network did not make a certain 
prediction1. They can be used to explore what-if scenarios and help identify improvement areas in the network's 
decision-making process.  

However, XAI approaches have rarely been used in the literature reviewed, and only a few studies provided 
saliency maps. Wildfire detection models can only be evaluated based on the information shared by the developer 
or by thoroughly testing a model's prediction abilities. Thus, it can be challenging for non-experts to evaluate 
them. We therefore argue for the need of an evaluation benchmark dataset. If such a dataset exists, model 
performance can be compared, which would enforce a certain level of complexity in evaluation. We plan to 
develop an evaluation dataset that can indicate a model's trustworthiness by measuring the extent to which it has 
learned causal features. Performance on this dataset will be challenging but could encourage the research 
community to focus on models suitable for real-world applications and shift the focus from performance-score-
focused to end-user-oriented development. 

1	See	Peters	et	al.	(2017)	for	a	definition	of	counterfactual.	
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In the following sections, we argue that an ML model needs to perform well on OOD data to be safely applied in 
the real world. We connect “spurious correlations” and vulnerability to adversarial attacks to a lack of learnt causal 
features, which we identify as a requirement for reliable and secure models. Based on this, we propose data 
augmentation on images for a general evaluation dataset which measures to what extent a model has learnt causal 
features. These images can be seen as counterfactual explanations. The novelty is that we apply data augmentation 
on an evaluation dataset. We aim to develop a data augmentation technique from Pearl’s notion of causality using 
structural causal models and generative networks. Our approach is distinct from other techniques for 
counterfactual explanations since other techniques are often not connected to Pearl's theory of causality (Chou et 
al., 2022). 

METHODOLOGY 

We conducted a comprehensive literature review, collecting 76 articles published between 2012 and 2022 on 
automated fire detection. Relevant search terms were used in Google Scholar to gather related articles. We 
identified papers within the collected articles introducing new fire or wildfire detection models. After assessing 
the relevance of the articles, 37 out of the initial 76 were retained for further analysis. For each selected article, 
we examined various criteria, including the following: performance score, data used, machine learning task, 
common FPs and FNs and other explanations such as saliency maps. We observed that most models are concerned 
with supervised learning tasks such as detection, classification, and segmentation, where each input has a label. 
The following definitions are adaptations from Shen et al. (2021). 

Definition. Let 𝒳, 𝒴 be sets of random variables with 𝐼𝑚	𝑋 ⊂ ℝ! and 𝐼𝑚	𝑌 ⊂ ℝ" for every 𝑋 ∈ 𝒳, 𝑌 ∈ 𝒴 and 
some 𝑛, 𝑚 ∈ ℕ. Let 𝑃(𝑋, 𝑌) be the joint probability distribution of the elements in 𝒳 and 𝒴. We call 𝒳 the feature 
space and 𝒴 the label space. A parametric model is a map 𝑓#: 𝒳 → 𝒴  for learnable parameters 𝜃 ∈ ℝ$. 

Definition. Let ℓ: 𝒴 × 𝒴 → ℝ be a loss function, that sums up the differences between the predicted labels and 
the ground truth of the labels. Partition the data from the distribution 𝑃(𝑋, 𝑌) into a training set with distribution 
𝑃%&(𝑋, 𝑌) and a test set with distribution 𝑃%'(𝑋, 𝑌). A supervised learning problem is to find a parametric model  
𝑓#∗, such that 𝔼[ℓ(𝑓#∗(𝑋), 𝑌)] is minimal for the elements in the test set with distribution 𝑃%'(𝑋, 𝑌)	and the ground-
truth 𝑌 ∈ 𝒴. 

Publicly available wildfire models were tested on Hugging Face to identify additional cases of FPs and FNs. By 
combining the abovementioned approaches, we identified common FP and FN issues and noticed that evaluation 
criteria differed in complexity and explainability. Evaluation data was often simplistic and rarely tested on OOD 
data. Additional explanations, such as FPs/FNs or saliency maps, were also scarcely provided. This led us to ask: 
What should an evaluation contain to ensure to the end user that the model is reliable? We generally describe this 
aspect as a model's trustworthiness. We examined how to determine if a model would work in the real world, 
where it is likely to be presented with images distinct from the training distribution. This led us to identify the 
necessary evaluation conditions for a model to be considered trustworthy in real-life scenarios. In the subsequent 
sections, we will further discuss trustworthiness and explore how learning causal features indicates how well a 
model performs on unseen data. This discussion will lead us to argue that an evaluation dataset should consist of 
images that test whether a model has learned causal visual features. 

TRUSTWORTHINESS 

A machine learning model’s reliability is commonly linked to an evaluation dataset's performance score (e.g., the 
number of correct predictions). However, model performance scores vary drastically depending on the dataset 
they were evaluated on. High accuracy on an evaluation dataset is meaningless if this dataset is too simple. Most 
models do not generalise well and perform poorly on unseen OOD data. The general out-of-distribution problem 
is a special case of a supervised learning problem in which the test distribution 𝑃%'(𝑋, 𝑌)	yields data that is 
significantly different from the data obtained from the training distribution 𝑃%&(𝑋, 𝑌). 

A distribution shift can occur when the domain changes. A model trained on a specific domain of forest fire 
images may be able to detect fires from a similar domain with high accuracy but can still perform poorly on 
images from a different domain. Such dissimilar domains can provide data from unseen geographical regions or 
data collected at different times of the day. Different backgrounds, camera positions, image resolutions or weather 
can represent domain shifts. OOD data also includes objects or scenes which do not exist in the training data. The 
performance on OOD data is very important for a real-world application of AI models. Crowd-sourced images 
can differ vastly from those in the model’s training data. For emergency operators to be able to rely on automated 
fire detection models, these models need to work well on unknown input data. 

WiP – AI for Crisis Management 
Proceedings of the 20th ISCRAM Conference – Omaha, Nebraska, USA May 2023 

J. Radianti, I. Dokas, N. LaLone, D. Khazanchi, eds. 936 of 1084



Schmidt-Colberg & Löffler-Dauth. Evaluation Dataset for Automated Early Wildfire Detection 

Consequently, we need a better way of evaluating a model’s performance. Therefore, we link a model's reliability 
to whether it generalises well on OOD data. The FNs and FPs we found in the literature are examples of models 
failing to generalise on OOD data. The cause of a FP can be a model learning a correlation between the label and 
some of its relevant features, but not all of them. For example, autumn foliage is classified as fire because colour 
features are used over shape and texture. 

Furthermore, FPs can happen because features not related to fire are learnt to predict labels. This is often called a 
spurious correlation. For example, a chipmunk in a forest environment might be classified as fire, but a chipmunk 
in a bathroom would not. 

Additionally, we require models to be secure. We link a model's security to its robustness to adversarial attacks. 
Adversarial attacks are malicious attacks that use modified data to manipulate ML models in the attacker's interest 
(Rouani et al., 2019). Security is essential in the public sector because AI systems can be used to make important 
decisions, such as automatically activating emergency services. These decisions should not be affected by 
malicious adversaries. For instance, an adversary could alter the input image data in a forest surveillance system 
slightly and, thus, cause a false alarm and a costly firefighting operation. Similar examples of adversarial attacks 
can be found in (de Mello, 2020). For AI models to be applicable in the public sector, they should be generalisable 
and robust towards adversarial attacks to ensure their trustworthiness. To our best knowledge, current standard 
evaluation practices do not provide this insight. In the next section, we describe how causality has been inked to 
OOD generalisation and robustness towards adversarial attacks.  

CAUSALITY 

Structural Causal Models (SCM) describe a causal relationship with a function, e.g., 𝑥 = 𝑓)(𝑦, 𝑢*). For an 
extensive review of SCMs, we refer to (Pearl, 2009; Peters et al., 2017). 𝑋 → 𝑌 denotes a causal relationship, 
where 𝑋 is the cause of 𝑌. Consider the Directed Acyclic Graph (DAG) in Figure 2, depicting such a causal 
relationship. We use capital letters (e.g., 𝑋,𝑌,𝑍) for random variables and lowercase letters (𝑥,𝑦,𝑧) as generic 
symbols for specific values taken by the corresponding random variables.  

Figure 2.  DAG depicting causal relationship between random variables 

The following equations show an interpretation of the diagram using two unknown functions: 

𝑥  =  𝑓)(𝑢*) 

𝑦  =  𝑓+(𝑥,  𝑢,) 
Eq. (1) 

The 𝑢- are the outcome of the exogenous variables 𝑈- whose causal factors are unknown and kept unexplained, 
and 𝑥	and 𝑦	are observations from the endogenous variables 𝑋 and 𝑌, respectively. Eq. (1) suggests that if 𝑥	 is 
changed, so is 𝑦. Thus, the related random variables have a statistical and a causal relationship. Additionally, any 
variable missing from the right-hand side, like 𝑢* in 𝑓+, is said not to influence the result of the left-hand side, 
provided the other variables remain constant. In image classification, the image observations 𝑥- are realisations 
of 𝑋, which is the effect of the target 𝑌, so the causal relationship is 𝑌 → 𝑋. Consequently, image recognition is 
an anti-causal problem because one tries to predict 𝑦 from 𝑥, e.g., 𝑝(𝑦|𝑥)	(Schölkopf	et	al. , 2012). This is the 
opposite of the causal direction, where 𝑥 is caused by 𝑦. The cause of a target fire can be found in other exogenous 
factors, such as chemical processes leading to heat and light being emitted. This gives cause to an image 𝑥. The 
high-level features denoted by ℎ. are all effects of this process. If this cause-and-effect relationship can be learnt, 
one can recognise fire on an image in many contexts and differentiate its high-level features from those caused by 
other factors. As explained in the previous section, AI models rarely perform well on differentiating these cause-
and-effect relationships.  
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Spurious correlations occur when two variables are correlated, but there is no causal relationship between them. 
Instead, the correlation is caused by a third confounding variable. For example, a confounding variable could be 
that most wildfire images were taken in one specific region during one season, e.g., in Australia.  

Figure 3. DAG depicting the domain generalisation problem (left) with exogenous variables 𝑈! (right) simplified 
version with exogenous variables 𝑈! omitted 

Figure 3 depicts a DAG of a confounding variable. Here, 𝐷 stands for a domain (e.g., a specific region, time-of-
year, camera), 𝑌 is the target (e.g., fire),  𝐻/ are high-level features caused by 𝐷, and 𝐻+ are high-level features 
caused by 𝑌. The identifier 𝑋 represents a set of images caused by 𝐻/ and 𝐻+. We used a similar DAG to the one 
presented in (Ilse et al., 2020) but included 𝑌012'0 caused by 𝑋 and exogenous random variables denoted by 𝑈-. 
Here we assume that the target labels are produced by a human annotator who correctly identifies the effects of 𝑌 
in an image. The following are the structural equations associated with the DAG in Figure 3. 

𝑦 = 𝑓+(𝑐, 𝑢*) 

𝑑 = 𝑓/(𝑐, 𝑢,) 

ℎ. = 𝑓3!(𝑦, 𝑢4) 

ℎ5 = 𝑓3"(𝑑, 𝑢6	) 

𝑥 = 𝑓)(ℎ5 , ℎ+, 𝑢7) 

𝑦012'0 = 𝑓38"1!(𝑥, 𝑢9) 

Eq. (2) 

The existence of 𝐶 leads to 𝐷 and 𝑌 being no longer independent (Pearl, 2009). Moreover, since 𝐻/ is a child of 
𝐷 it is also spuriously correlated with 𝑌. This means any model trained to predict 𝑌 from 𝑋 can rely on both 𝐻/ 
and 𝐻+ to predict 𝑌012'0. Unsurprisingly, a model trained on such data would predict the presence of fire when 
presented with an image of autumn foliage. If a model only uses ℎ. for its predictions, such FPs would not occur. 
Mahajan et al. (2022) also call causal features stable features. The authors have shown that they are reliable 
indicators for robustness towards several adversarial attacks while also generalising well on OOD data. It has been 
argued that DNN models are susceptible to adversarial attacks due to a lack of causal understanding (Kilbertus et 
al. 2018; Zhang et al. 2020). Consequently, we argue that learning causal features decreases the appearance of 
spurious correlations and increases robustness towards adversarial attacks while improving OOD performance. 
Thus, learning causal features makes a model more reliable and secure, according to our definition of reliability 
and security. As mentioned, predicting 𝑦 from 𝑥 is an anti-causal problem (Schölkopf et al. 2012). 

Nevertheless, Kilbertus et al. (2018) have shown that for some deep learning algorithms (e.g. generative Models), 
it is possible to approximate the causal direction by doing an exhaustive search over samples of the input feature 
space of the anti-causal direction, but not for others (e.g. CNN). This remains a computationally hard problem. 
Talking about cause and effect is difficult in the case of conventional object detection, which heavily relies on 
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CNN-based models. Nevertheless, looking at fire detection from the causal perspective is beneficial. For instance, 
Sun et al. (2021)  use intervention to suppress lamp disturbance.  An intervention in a machine learning model is 
a change in the outcome of a random variable, such that the new outcome is determined. For example, consider a 
random variable 𝑋 that yields “heads” or “tails”, depending on some random input. An intervention could cause 
the outcome to be decisively “heads”. An intervention is denoted using the 𝑑𝑜() operator, e.g., 𝑑𝑜(𝑋 = ℎ𝑒𝑎𝑑𝑠). 
Such an intervention deletes the edge to parent nodes in the corresponding DAG. In Eq. (2), if 𝑋 is changed, it 
does not affect ℎ. or ℎ5. If the value of ℎ5 is changed, it also changes the value of 𝑥. Therefore, if two variables 
are independent, we can do an intervention that renders the observational distribution independent of the domain 
𝑝(𝑥, 𝑦|𝑑𝑜(𝑑)) = 𝑝(𝑥, 𝑦).  

Ilse et al. (2021) have shown that data augmentation can simulate such interventions. This implies that with the 
right data augmentation, one can simulate the interventional distribution 𝑝(𝑥, 𝑦|𝑑𝑜(𝑑)). A model trained on such 
data learns more of ℎ. features and performs better on OOD data. This aligns with our observations that fire 
detection models trained with a vast set of domains or data augmentation techniques have fewer FPs and FNs.  

FIRE EVALUATION DATASET 

The research presented in this paper aims to describe standards which an evaluation dataset for wildfire detection 
models should meet. A model’s performance on such a dataset could be meaningful for real-world applications. 
However, producing an evaluation dataset that meets the described standards is out of the scope of this paper but 
could be realised in future works. Knowing that learning causal features leads to more reliable models, we ask: 
“To what extent has the model learnt causal features?”. We want to use interventions and the corresponding data 
augmentation simulation to answer this question. Consider the following two interventions in the data generation 
process from Figure 3 depicted by Figure 4: 

𝑑𝑜(𝐻+ = ℎ*)  Eq. (3.1) 

𝑑𝑜(𝐻/ = ℎ,)  Eq. (3.2) 

As stated earlier, an intervention removes the causal link to its parents. Since the causal features ℎ. have been 
intervened on, an image coming from 3.1. (e.g., 𝑥*  = 𝑓)(ℎ5 ,  ℎ*))  will have fewer causal features than an image 
coming from 3.2 (e.g., 𝑥,  = 𝑓)(ℎ5 ,  ℎ,)). When predicting the label 𝑦	from 𝑥 using causal features, the probability 
𝑝(𝑌012'0 = 𝑓𝑖𝑟𝑒	|𝑋 = 𝑥-) should decrease for 𝑥*and remain unchanged for 𝑥,. Based on Ilse et. al (2020) we argue 
that it is possible to develop data augmentation techniques that simulate the interventions above. Hereafter, we 
denote images simulating Eq. (3.1) with 𝑎𝑢𝑔3.(𝑥) and images simulating Eq. (3.2) with 𝑎𝑢𝑔35(𝑥). Assuming 
that fire is present in an original image 𝑥, a model which relies mainly on causal features would predict the 
presence of fire in x and 𝑎𝑢𝑔35(𝑥) with the same probability and 𝑎𝑢𝑔3.(𝑥) with a lower probability. Note that 
intervening on all high-level features in 𝐻: would change the label.  

Figure 4. Simplified DAG where exogenous variables are omitted 
 (left) intervention on 𝐻"  (right) intervention on 𝐻# 

Figure 5 is an original image of a forest fire without augmentation. Figure 6 contains examples demonstrating 
how data augmentation can simulate an intervention in the fire image generation process. For example, consider 
the shape of a fire. It could be ignited in a controlled object shaped a certain way which releases light. A fire that 
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is coloured in an unusual manner could result from adding certain chemicals. The textured fire image can be 
obtained by using a special camera with a reactive heat filter. However, all these examples could only be produced 
in a controlled environment and, statistically speaking, are very unlikely to occur in a wildfire scenario and hence 
would be gathered to obtain non-wildfire examples in the data generation process. Therefore, in all these cases, 
the label of the original image (Figure 6) would no longer be “wildfire”.   

We require the evaluation dataset to contain images with data augmentation simulating interventions on at least 
three visual features: shape, colour, and texture. Only images that have not been “intervened on” in such a way 
will retain their original label. 

Figure 5. Original Wildfire Image 

These images were created manually, and we leave the development of a model which generates such 
augmentations for future research. As stated earlier, a good performance on the interventional distribution 
𝑝a𝑋b𝑑𝑜a𝐻+ = ℎ.c, 𝐻/ = ℎ5c is insufficient for evaluation; a model trained on a completely different task could 
perform well. Thus, an evaluation dataset also needs to contain images of fire with various backgrounds e.g., 
images drawn from the probability distribution 𝑝a𝑋b𝐻+ = ℎ., 𝑑𝑜(𝐻/ = ℎ5)c. Figure 7 shows examples of such 
images: Fire caused by wood burning (our target value) in various backgrounds, angles, seasons, and time-of-day. 
Finally, to further test for OOD generalisation, consider images with the same or similar anti-causal effects as fire 
such as the images depicted in Figure 8. 

Figure 6. Counterfactual images of fire simulating interventions on 
(left) shape (centre) texture and (right) colour 
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Figure 7. Fire images with various domain changes 

Figure 8. Images with anti-causal effects like fire 

There are several advantages to an evaluation dataset as we described it. The performance of a model can be tested 
without requiring access to the prediction function. Since we augment high-level features, the results are 
interpretable even by non-experts. Possible observations are: “A model mainly uses colour features to make its 
predictions”, “The model does not consider shape or texture”, “Objects that illuminate their surroundings are 
common FPs”, and “A model fails to recognise small fires during daytime reliably”. People developing models 
can use this information to improve them. An end-user can use this information to decide whether the model is 
reliable and secure enough for their personal use case.  

Furthermore, since we are specifically interested in the performance of a model on OOD data, the evaluation 
dataset must be created independently of a model’s training and testing data. This means that once such a dataset 
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has been created, it can be used to evaluate any model, making it possible to compare the performance between 
different models. Finally, if such a dataset is adapted as an evaluation benchmark, the research would be 
encouraged to develop models suitable for real-world application.  

LIMITATIONS 

Without knowledge about the causal structure of the data generation process and the high-level causal features, it 
will be challenging to define augmentation techniques that simulate the intervention 𝑑𝑜(𝐻.). Additionally, there 
may be features ℎ5 causing an image that would be mistaken for fire, even by a human. However, evaluating 
whether a model performs on par with human deduction ability is already of great value. From the end-user 
perspective, knowing this could be reassuring and offers more explanation of performance than merely reporting 
accuracy on test data. 

Creating a data augmentation technique simulating the interventional distribution 𝑝a𝑋b𝐻+ = ℎ., 𝑑𝑜(𝐻/ = ℎ5)c 
is complex in the case of wildfire since there is no clear distinction between foreground and background (Sauer 
and Geier, 2021). We have not included the anti-causal effects of fire in our causal model but try to mitigate this 
by including images of objects with similar anti-causal effects in the evaluation dataset.  

CONCLUSION  

Current evaluation practices need to give more insight into whether a fire detection model can be applied reliably 
in the real world, where models are subjected to OOD data in the form of unseen objects, unusual events, or 
security threats. This can cause many FPs or FNs, potentially leading to false or missed alarms. Before an ML 
model is employed, the end-user should know how a model is making its predictions. With this information, one 
can decide how much a system is sufficient. We identified causal features to improve a model’s OOD 
generalisation ability and robustness towards adversarial attacks. Based on this, we propose data augmentations 
derived from causal intervention. Those data augmentations can be used to measure to what extent a model has 
learnt causal features. From this, an evaluation dataset can be constructed and used independently of particular 
models and their training data. With such a dataset, one can compare and investigate model performance in terms 
of the ability to learn causal features. This indicates a model's reliability and security. In the next steps of our 
research, we plan to build a counterfactual generative model building on the work of Sauer and Geier (2021) and 
Ilse et al., (2021). We will use FASDD (Fire) and ImageNet (Non-Fire classes) datasets for this. 
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