|   | 
Details
   web
Records
Author (up) Alexander Garcia-Aristizabal; Maria Polese; Giulio Zuccaro; Miguel Almeida; Christoph Aubrecht
Title Improving emergency preparedness with simulation of cascading events scenarios Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords Cascading effects; event tree; forest fire; impact scenarios; time-dependent vulnerability
Abstract Natural or man-made disasters can trigger other negative events leading to tremendous increase of fatalities and damages. In case of Low Probability ? High consequences events, decision makers are faced with very difficult choices and the availability of a tool to support emergency decisions would be very much beneficial. Within EU CRISMA project a concept model and tool for evaluating cascading effects into scenario-based analyses was implemented.This paper describes the main concepts of the model and demonstrates its application with reference to two earthquake-triggered CE scenarios, including (the first) the falling of an electric cable, ignition and spreading of forest fire and (the second) the happening of a second earthquake in a sequence. Time dependent seismic vulnerability of buildings and population exposure are also considered for updating impact estimation during an earthquake crisis.
Address
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Planning, Foresight and Risk Analysis Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved yes
Call Number Serial 1308
Share this record to Facebook
 

 
Author (up) Christoph Aubrecht; Klaus Steinnocher; Hermann Huber
Title DynaPop – Population distribution dynamics as basis for social impact evaluation in crisis management Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 314-318
Keywords Information systems; Population distribution; Population dynamics; Risk assessment; Activity patterns; Crisis management; Evacuation planning; Population distribution patterns; Population dynamics models; Population exposure; Spatial disaggregation; Spatio-temporal models; Economic and social effects
Abstract In this paper ongoing developments regarding the conceptual setup and subsequent implementation logic of a seamless spatio-temporal population dynamics model are presented. The DynaPop model aims at serving as basic input for social impact evaluation in crisis management. In addition to providing the starting point for assessing population exposure dynamics, i.e. the location and number of affected people at different stages during an event, knowledge of spatio-temporal population distribution patterns is also considered crucial for a set of other related aspects in disaster risk and crisis management including evacuation planning and casualty assessment. DynaPop is implemented via a gridded spatial disaggregation approach and integrates previous efforts on spatio-temporal modeling that account for various aspects of population dynamics such as human mobility and activity patterns that are particularly relevant in picturing the highly dynamic daytime situation.
Address AIT Austrian Institute of Technology, Energy Department, Austria; AIT Austrian Institute of Technology, Safety and Security Department, Austria
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Geographic Information Science Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 279
Share this record to Facebook
 

 
Author (up) Christoph Aubrecht; Sérgio Freire; Josef Fröhlich; Beatrice Rath; Klaus Steinnocher
Title Integrating the concepts of foresight and prediction for improved disaster risk management Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Disasters; Forecasting; Information systems; Risk perception; Disaster management; Integrated disaster risk management; Involvement; Participation; Public awareness; Risk characteristics; Risk governance; Disaster prevention
Abstract This discussion paper focuses on conceptualizing the ultimate goal in disaster management, i.e. reduction of future risks and impacts and explicitly highlights how actions taken in various phases of integrated disaster risk management influence vulnerability and eventually overall risk characteristics. First, the advancement of the disaster management concept evolving from a cyclic perspective to a spiral view is described and the various stages of disaster management including risk analysis, mitigation, and response are explained. In an attempt to improve and advance disaster risk management, next, the concepts of foresight and prediction are described and its major differences are highlighted. Finally, the basic framework of risk governance is considered for integrating foresight and prediction and thus lifting disaster management to the next level. Active and transparent communication and participation is seen as the key for successfully implementing risk governance.
Address AIT Austrian Institute of Technology, Foresight and Policy Development Department, Austria; New University of Lisbon, E-GEO, Geography and Regional Planning Research Center, Portugal
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Planning and Foresight Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 278
Share this record to Facebook
 

 
Author (up) Michael R. Bartolacci; Christoph Aubrecht; Dilek Ozceylan Aubrecht
Title A portable base station optimization model for wireless infrastructure deployment in disaster planning and management Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 50-54
Keywords Base stations; Disaster prevention; Disasters; Information systems; Mathematical models; Optimization; Wireless telecommunication systems; Ad hoc mobile networks; Cellular mobile networks; Disaster planning; Optimization modeling; Real-time management; Wireless communications; Wireless infrastructure deployments; Wireless telecommunications; Emergency services
Abstract Disaster response requires communications among all affected parties including emergency responders and the affected populace. Wireless telecommunications, if available through a fixed structure cellular mobile network, satellites, portable station mobile networks and ad hoc mobile networks, can provide this means for such communications. While the deployment of temporary mobile networks and other wireless equipment following disasters has been successfully accomplished by governmental agencies and mobile network providers following previous disasters, there appears to be little optimization effort involved with respect to maximizing key performance measures of the deployment or minimizing overall 'cost' (including time aspects) to deploy. This work-in-progress does not focus on the question of what entity will operate the portable base during a disaster, but on optimizing the placement of mobile base stations or similar network nodes for planning and real time management purposes. An optimization model is proposed for the staging and placement of portable base stations to support disaster relief efforts.
Address Pennsylvania State University – Berks, United States; AIT Austrian Institute of Technology, Austria; World Bank, United States; Sakarya University, Turkey
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Analytic Modeling and Simulation Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 294
Share this record to Facebook
 

 
Author (up) Sérgio Freire; Christoph Aubrecht
Title Assessing spatio-temporal population exposure to tsunami hazard in the Lisbon Metropolitan Area Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Hazards; Information systems; Mapping; Population distribution; Population statistics; Land use and land cover; Lisbon; Metropolitan area; Population exposure; Spatio-temporal; Spatiotemporal distributions; Tsunami hazards; Tsunami inundation; Tsunamis
Abstract The coastal region of Lisbon, Portugal, is potentially subject to tsunami hazard. Mapping and assessing tsunami risk requires giving adequate consideration to the population exposure. In the present work we model and map the spatio-temporal distribution of population in the daily cycle and analyze it with a tsunami hazard map to better assess tsunami risk in the Lisbon Metropolitan Area. New high-resolution daytime and nighttime population distribution surfaces are developed using 'intelligent dasymetric mapping' to combine best-available census data and statistics with land use and land cover data. Mobility statistics are considered for mapping daytime distribution. Finally, the population distribution maps are combined with the Tsunami Inundation Susceptibility map to assess potential human exposure to tsunami in daytime and nighttime periods. Results show that a significant amount of population is potentially at risk, and its numbers increase from nighttime to daytime, especially in the zones of high susceptibility.
Address New University of Lisbon, E-GEO, Geography and Regional Planning Research Center, Portugal; AIT Austrian Institute of Technology, Foresight and Policy Development Department, Austria
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Geographic Information Science Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 511
Share this record to Facebook
 

 
Author (up) Sérgio Freire; Christoph Aubrecht; Stephanie Wegscheider
Title When the tsunami comes to town – Improving evacuation modeling by integrating high-resolution population exposure Type Conference Article
Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012
Volume Issue Pages
Keywords Floods; Information systems; Risk assessment; 3D analysis; Accurate modeling; Evacuation modeling; Horizontal and vertical displacement; Lisbon; Mitigation measures; Population exposure; Spatial modeling; Tsunamis
Abstract Tsunamis are a major risk for Lisbon (Portugal) coastal areas whose impacts can be extremely high, as confirmed by the past occurrence of major events. For correct risk assessment and awareness and for implementing mitigation measures, detailed simulation of exposure and evacuation is essential. This work uses a spatial modeling approach for estimating residential population distribution and exposure to tsunami flooding by individual building, and for simulating their evacuation travel time considering horizontal and vertical displacement. Results include finer evaluation of exposure to, and evacuation from, a potential tsunami, considering the specific inundation depth and building's height. This more detailed and accurate modeling of exposure to and evacuation from a potential tsunami can benefit risk assessment and contribute to more efficient Crisis Response and Management. © 2012 ISCRAM.
Address FCSH, Research Centre for Geography and Regional Planning, Nova University of Lisbon, Portugal; AIT Austrian Institute of Technology, Foresight and Policy Development Department, Austria; German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Germany
Corporate Author Thesis
Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780864913326 Medium
Track Geographic Information Science and Technology Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 110
Share this record to Facebook