|   | 
Details
   web
Records
Author Tina Comes; Claudine Conrado; Michael Hiete; Michiel Kamermans; Gregor Pavlin; Niek Wijngaards
Title An intelligent decision support system for decision making under uncertainty in distributed reasoning frameworks Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Automation; Civil defense; Decision making; Decision support systems; Disasters; Expert systems; Information systems; Intelligent systems; Multi agent systems; Risk management; Decision making under uncertainty; Distributed decision support systems; Distributed reasonings; Emergency management; Intelligent decision support systems; Multi-criteria decision analysis; Scenario-based; Theoretical framework; Information filtering
Abstract This paper presents an intelligent system facilitating better-informed decision making under severe uncertainty as found in emergency management. The construction of decision-relevant scenarios, being coherent and plausible descriptions of a situation and its future development, is used as a rationale for collecting, organizing, filtering and processing information for decision making. The development of scenarios is geared to assessing decision alternatives, thus avoiding time-consuming analysis and processing of irrelevant information. The scenarios are constructed in a distributed setting allowing for a flexible adaptation of reasoning (principles and processes) to the problem at hand and the information available. This approach ensures that each decision can be founded on a coherent set of scenarios, which was constructed using the best expertise available within a limited timeframe. Our theoretical framework is demonstrated in a distributed decision support system by orchestrating both automated systems and human experts into workflows tailored to each specific problem.
Address Institute for Industrial Production, Karlsruhe Institute of Technology (KIT), Germany; D-CIS Lab / Thales Research and Technology, Netherlands
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track (up) Intelligent Systems Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 406
Share this record to Facebook
 

 
Author Marinus Maris; Gregor Pavlin
Title Distributed perception networks for crisis management Type Conference Article
Year 2006 Publication Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2006
Volume Issue Pages 376-381
Keywords Complex networks; Information fusion; Information systems; Multi agent systems; Automated information; Crisis management; Data storage infrastructure; Distributed perception; Distributed perception networks; Functional Prototypes; Mobile phone networks; Situation assessment; Information management
Abstract Situation assessment in crisis management applications can be supported by automated information fusion systems, such as Distributed Perception Networks. DPNs are self-organizing fusion systems that can infer hidden events through interpretation of huge amounts of heterogeneous and noisy observations. DPNs are a logical layer on top of existing communication, sensing, processing and data storage infrastructure. They can reliably and efficiently process information of various quality obtained from humans and sensors through the existing communication systems, such as mobile phone networks or internet. In addition, modularity of DPNs supports efficient design and maintenance of very complex fusion systems. In this paper, a fully functional prototype of a DPN system is presented that fuses information from gas sensors and human observations. The task of the system is to compute probability values for the hypothesis that a particular gas is present in the environment. It is discussed how such a system could be used for crisis management.
Address University of Amsterdam, Netherlands
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Newark, NJ Editor B. Van de Walle, M. Turoff
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9090206019; 9789090206011 Medium
Track (up) RESEARCH METHODS IN CRISIS DECISION MAKING Expedition Conference 3rd International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 744
Share this record to Facebook