toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Marinus Maris; Gregor Pavlin pdf  isbn
openurl 
  Title Distributed perception networks for crisis management Type Conference Article
  Year 2006 Publication Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2006  
  Volume Issue Pages 376-381  
  Keywords Complex networks; Information fusion; Information systems; Multi agent systems; Automated information; Crisis management; Data storage infrastructure; Distributed perception; Distributed perception networks; Functional Prototypes; Mobile phone networks; Situation assessment; Information management  
  Abstract Situation assessment in crisis management applications can be supported by automated information fusion systems, such as Distributed Perception Networks. DPNs are self-organizing fusion systems that can infer hidden events through interpretation of huge amounts of heterogeneous and noisy observations. DPNs are a logical layer on top of existing communication, sensing, processing and data storage infrastructure. They can reliably and efficiently process information of various quality obtained from humans and sensors through the existing communication systems, such as mobile phone networks or internet. In addition, modularity of DPNs supports efficient design and maintenance of very complex fusion systems. In this paper, a fully functional prototype of a DPN system is presented that fuses information from gas sensors and human observations. The task of the system is to compute probability values for the hypothesis that a particular gas is present in the environment. It is discussed how such a system could be used for crisis management.  
  Address University of Amsterdam, Netherlands  
  Corporate Author Thesis  
  Publisher Royal Flemish Academy of Belgium Place of Publication Newark, NJ Editor B. Van de Walle, M. Turoff  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9090206019; 9789090206011 Medium  
  Track RESEARCH METHODS IN CRISIS DECISION MAKING Expedition Conference 3rd International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 744  
Share this record to Facebook
 

 
Author (up) Tina Comes; Claudine Conrado; Michael Hiete; Michiel Kamermans; Gregor Pavlin; Niek Wijngaards pdf  openurl
  Title An intelligent decision support system for decision making under uncertainty in distributed reasoning frameworks Type Conference Article
  Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010  
  Volume Issue Pages  
  Keywords Automation; Civil defense; Decision making; Decision support systems; Disasters; Expert systems; Information systems; Intelligent systems; Multi agent systems; Risk management; Decision making under uncertainty; Distributed decision support systems; Distributed reasonings; Emergency management; Intelligent decision support systems; Multi-criteria decision analysis; Scenario-based; Theoretical framework; Information filtering  
  Abstract This paper presents an intelligent system facilitating better-informed decision making under severe uncertainty as found in emergency management. The construction of decision-relevant scenarios, being coherent and plausible descriptions of a situation and its future development, is used as a rationale for collecting, organizing, filtering and processing information for decision making. The development of scenarios is geared to assessing decision alternatives, thus avoiding time-consuming analysis and processing of irrelevant information. The scenarios are constructed in a distributed setting allowing for a flexible adaptation of reasoning (principles and processes) to the problem at hand and the information available. This approach ensures that each decision can be founded on a coherent set of scenarios, which was constructed using the best expertise available within a limited timeframe. Our theoretical framework is demonstrated in a distributed decision support system by orchestrating both automated systems and human experts into workflows tailored to each specific problem.  
  Address Institute for Industrial Production, Karlsruhe Institute of Technology (KIT), Germany; D-CIS Lab / Thales Research and Technology, Netherlands  
  Corporate Author Thesis  
  Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN Medium  
  Track Intelligent Systems Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 406  
Share this record to Facebook
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: