|   | 
Details
   web
Records
Author (up) Carlo Alberto Bono; Barbara Pernici; Jose Luis Fernandez-Marquez; Amudha Ravi Shankar; Mehmet Oguz Mülâyim; Edoardo Nemni
Title TriggerCit: Early Flood Alerting using Twitter and Geolocation – A Comparison with Alternative Sources Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 674-686
Keywords Social Media; Disaster management; Early Alerting
Abstract Rapid impact assessment in the immediate aftermath of a natural disaster is essential to provide adequate information to international organisations, local authorities, and first responders. Social media can support emergency response with evidence-based content posted by citizens and organisations during ongoing events. In the paper, we propose TriggerCit: an early flood alerting tool with a multilanguage approach focused on timeliness and geolocation. The paper focuses on assessing the reliability of the approach as a triggering system, comparing it with alternative sources for alerts, and evaluating the quality and amount of complementary information gathered. Geolocated visual evidence extracted from Twitter by TriggerCit was analysed in two case studies on floods in Thailand and Nepal in 2021. The system respectively returned a large scale and a local scale alert, both in a timely manner and accompanied by a valid geographical description, while providing information complementary to existing disaster alert mechanisms.
Address Politecnico di Milano- DEIB;Politecnico di Milano- DEIB;University of Geneva;University of Geneva;Artificial Intelligence Research Institute (IIIA-CSIC); United Nations Satellite Centre (UNOSAT), United Nations Institute for Training and Research (UNITAR)
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Social Media for Crisis Management Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2447
Share this record to Facebook
 

 
Author (up) Hafiz Budi Firmansyah; Jesus Cerquides; Jose Luis Fernandez-Marquez
Title Ensemble Learning for the Classification of Social Media Data in Disaster Response Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 710-718
Keywords Ensemble learning; image classification; social media; disaster response
Abstract Social media generates large amounts of almost real-time data which has proven valuable in disaster response. Specially for providing information within the first 48 hours after a disaster occurs. However, this potential is poorly exploited in operational environments due to the challenges of curating social media data. This work builds on top of the latest research on automatic classification of social media content, proposing the use of ensemble learning to help in the classification of social media images for disaster response. Ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Experimental results show that ensemble learning is a valuable technology for the analysis of social media images for disaster response,and could potentially ease the integration of social media data within an operational environment.
Address Citizen Cyberlab, CUI, University of Geneva, Switzerland; Citizen Cyberlab, CUI, University of Geneva, Switzerland; IIIA-CSIC, Barcelona, Spain
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Social Media for Crisis Management Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2450
Share this record to Facebook