toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Christoph Aubrecht; Sérgio Freire; Josef Fröhlich; Beatrice Rath; Klaus Steinnocher pdf  isbn
openurl 
  Title Integrating the concepts of foresight and prediction for improved disaster risk management Type Conference Article
  Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011  
  Volume Issue Pages  
  Keywords Disasters; Forecasting; Information systems; Risk perception; Disaster management; Integrated disaster risk management; Involvement; Participation; Public awareness; Risk characteristics; Risk governance; Disaster prevention  
  Abstract This discussion paper focuses on conceptualizing the ultimate goal in disaster management, i.e. reduction of future risks and impacts and explicitly highlights how actions taken in various phases of integrated disaster risk management influence vulnerability and eventually overall risk characteristics. First, the advancement of the disaster management concept evolving from a cyclic perspective to a spiral view is described and the various stages of disaster management including risk analysis, mitigation, and response are explained. In an attempt to improve and advance disaster risk management, next, the concepts of foresight and prediction are described and its major differences are highlighted. Finally, the basic framework of risk governance is considered for integrating foresight and prediction and thus lifting disaster management to the next level. Active and transparent communication and participation is seen as the key for successfully implementing risk governance.  
  Address AIT Austrian Institute of Technology, Foresight and Policy Development Department, Austria; New University of Lisbon, E-GEO, Geography and Regional Planning Research Center, Portugal  
  Corporate Author Thesis  
  Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9789724922478 Medium  
  Track Planning and Foresight Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 278  
Share this record to Facebook
 

 
Author (up) Sérgio Freire; Aneta Florczyk; Martino Pesaresi pdf  isbn
openurl 
  Title New Multi-temporal Global Population Grids ? Application to Volcanism Type Conference Article
  Year 2016 Publication ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016  
  Volume Issue Pages  
  Keywords Built up; GHSL; Population Distribution; Dasymetric Mapping; Volcanoes; Spatio-temporal Analysis  
  Abstract Better and finer global analyses of human exposure and risk of natural disasters require improved geoinformation on population distribution and densities, in particular concerning temporal and spatial resolution and capacity for change assessment. This paper presents the development of new multi-temporal global population grids and illustrates their value in the context of risk analysis by estimating the worldwide distribution of population in relation to recent volcanism. Results indicate that almost 6% of the world?s 2015 population lived within 100 km of a volcano with at least one significant eruption, and more than 12% within 100 km of a Holocene volcano, with human concentrations in this zone increasing since 1990 above the global population change rate. The novel 250-m resolution population grids constitute the new state-of-the-art in terms of global geospatial population data, with the potential to advance modeling and analyses at all stages of the emergency management cycle.  
  Address  
  Corporate Author Thesis  
  Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3433 ISBN 978-84-608-7984-54 Medium  
  Track Geospatial Data and Geographical Information Science Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1373  
Share this record to Facebook
 

 
Author (up) Sérgio Freire; Aneta Florczyk; Stefano Ferri pdf  isbn
openurl 
  Title Modeling Day- and Nighttime Population Exposure at High Resolution: Application to Volcanic Risk Assessment in Campi Flegrei Type Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords Campi Flegrei; dasymetric mapping; EMS2013; GHSL; NDPop; Population exposure; volcanic risk  
  Abstract Improving analyses of population exposure to potential natural hazards, especially sudden ones, requires more detailed geodemographic data. Availability of such information for large areas is limited by specific database requirements and their cost.

This paper introduces and tests a new approach for refining spatio-temporal population distribution at high resolution by combining diverse geoinformation layers. Its value is demonstrated in the context of disaster risk analysis and emergency management by using the data in a real volcanic risk scenario in Campi Flegrei, located within the metropolitan area of Naples, Italy. Results show that there is significant variation in exposure from nighttime to daytime in the study area.

The proposed modeling approach can be applied and customized for other metropolitan areas, ultimately benefiting disaster risk assessment and mitigation.
 
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Geospatial Data and Geographical Information Science Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved yes  
  Call Number Serial 1217  
Share this record to Facebook
 

 
Author (up) Sérgio Freire; Christoph Aubrecht pdf  isbn
openurl 
  Title Assessing spatio-temporal population exposure to tsunami hazard in the Lisbon Metropolitan Area Type Conference Article
  Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011  
  Volume Issue Pages  
  Keywords Hazards; Information systems; Mapping; Population distribution; Population statistics; Land use and land cover; Lisbon; Metropolitan area; Population exposure; Spatio-temporal; Spatiotemporal distributions; Tsunami hazards; Tsunami inundation; Tsunamis  
  Abstract The coastal region of Lisbon, Portugal, is potentially subject to tsunami hazard. Mapping and assessing tsunami risk requires giving adequate consideration to the population exposure. In the present work we model and map the spatio-temporal distribution of population in the daily cycle and analyze it with a tsunami hazard map to better assess tsunami risk in the Lisbon Metropolitan Area. New high-resolution daytime and nighttime population distribution surfaces are developed using 'intelligent dasymetric mapping' to combine best-available census data and statistics with land use and land cover data. Mobility statistics are considered for mapping daytime distribution. Finally, the population distribution maps are combined with the Tsunami Inundation Susceptibility map to assess potential human exposure to tsunami in daytime and nighttime periods. Results show that a significant amount of population is potentially at risk, and its numbers increase from nighttime to daytime, especially in the zones of high susceptibility.  
  Address New University of Lisbon, E-GEO, Geography and Regional Planning Research Center, Portugal; AIT Austrian Institute of Technology, Foresight and Policy Development Department, Austria  
  Corporate Author Thesis  
  Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9789724922478 Medium  
  Track Geographic Information Science Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 511  
Share this record to Facebook
 

 
Author (up) Sérgio Freire; Christoph Aubrecht; Stephanie Wegscheider pdf  isbn
openurl 
  Title When the tsunami comes to town – Improving evacuation modeling by integrating high-resolution population exposure Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Floods; Information systems; Risk assessment; 3D analysis; Accurate modeling; Evacuation modeling; Horizontal and vertical displacement; Lisbon; Mitigation measures; Population exposure; Spatial modeling; Tsunamis  
  Abstract Tsunamis are a major risk for Lisbon (Portugal) coastal areas whose impacts can be extremely high, as confirmed by the past occurrence of major events. For correct risk assessment and awareness and for implementing mitigation measures, detailed simulation of exposure and evacuation is essential. This work uses a spatial modeling approach for estimating residential population distribution and exposure to tsunami flooding by individual building, and for simulating their evacuation travel time considering horizontal and vertical displacement. Results include finer evaluation of exposure to, and evacuation from, a potential tsunami, considering the specific inundation depth and building's height. This more detailed and accurate modeling of exposure to and evacuation from a potential tsunami can benefit risk assessment and contribute to more efficient Crisis Response and Management. © 2012 ISCRAM.  
  Address FCSH, Research Centre for Geography and Regional Planning, Nova University of Lisbon, Portugal; AIT Austrian Institute of Technology, Foresight and Policy Development Department, Austria; German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Germany  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Geographic Information Science and Technology Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 110  
Share this record to Facebook
 

 
Author (up) Sérgio Freire; Daniele Ehrlich; Stefano Ferri pdf  isbn
openurl 
  Title Assessing temporal changes in global population exposure and impacts from earthquakes Type Conference Article
  Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014  
  Volume Issue Pages 324-328  
  Keywords Earthquakes; Hazards; Information systems; Population distribution; Risk assessment; Cities; Global population; Population exposure; Population growth; Seismic intensity; Spatial analysis; Spatiotemporal analysis; Temporal change; Population statistics  
  Abstract It is frequently conveyed, especially in the media, an idea of “increasing impact of natural hazards” typically attributed to their rising frequency and/or growing vulnerability of populations. However, for certain hazard types, this may be mostly a result of increasing population exposure due to phenomenal global population growth, especially in the most hazardous areas. We investigate temporal changes in potential global population exposure and impacts from earthquakes in the XXth century. Spatial analysis is used to combine historical population distributions with a seismic intensity map. Changes in number of victims were also analyzed, while controlling for the progress in frequency and magnitude of hazard events. There is also a focus on mega-cities and implications of fast urbanization for exposure and risk. Results illustrate the relevance of population growth and exposure for risk assessment and disaster outcome, and underline the need for conducting detailed global mapping of settlements and population distribution.  
  Address European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, Italy  
  Corporate Author Thesis  
  Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780692211946 Medium  
  Track Geographic Information Science Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 510  
Share this record to Facebook
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: