Records |
Author  |
Florian Brauner; Thomas Münzberg; Marcus Wiens; Frank Fiedrich; Alex Lechleuthner; Frank Schultmann |
Title |
Critical Infrastructure Resilience: A Framework for Considering Micro and Macro Observation Levels |
Type |
Conference Article |
Year |
2015 |
Publication |
ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2015 |
Volume |
|
Issue |
|
Pages |
|
Keywords |
Benchmark; multi-attribute value theory; power outages; time-dependent indicator; vulnerability assessment |
Abstract |
The resilience mechanisms of Critical Infrastructures (CIs) are often hard to understand due to system complexity. With rising research interest, models are developed to reduce this complexity. However, these models imply reductions and limitations. According to the level of observation, models either focus on effects in a CI system or on effects in a single CI. In cases of limited resources, such limitations exclude some considerations of crisis interventions, which could be identified in combining both observation levels. To overcome these restrictions, we propose a two-step framework which enables to analyze the vulnerability of a CI and as well in comparison to other CIs. This enhances the understanding of temporal crisis impacts on the overall performance of the supply, and the crisis preparations in each CI can be assessed. The framework is applied to the demonstrating example of the functionalities of hospitals that are potentially suffering from a power outage. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
University of Agder (UiA) |
Place of Publication |
Kristiansand, Norway |
Editor |
L. Palen; M. Buscher; T. Comes; A. Hughes |
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2411-3387 |
ISBN |
9788271177881 |
Medium |
|
Track |
Analytical Modelling and Simulation |
Expedition |
|
Conference |
ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1191 |
Share this record to Facebook |
|
|
|
Author  |
Sadeeb Ottenburger; Thomas Münzberg |
Title |
An Approach for Analyzing the Impacts of Smart Grid Topologies on Critical Infrastructure Resilience |
Type |
Conference Article |
Year |
2017 |
Publication |
Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management |
Abbreviated Journal |
Iscram 2017 |
Volume |
|
Issue |
|
Pages |
400-411 |
Keywords |
Smart Grids; Urban Resilience; Agent Based Simulation; Critical Infrastructure Protection; Decision Support |
Abstract |
The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This fact opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of vital services of critical infrastructures. An elaborated topology of smart grids can increase urban resilience. In this paper, we discuss the role of smart grids, give research impulses for examining diverse smart grid topologies and for evaluating their impacts on urban resilience by using an agent based simulation approach which considers smart grid topology as a model parameter. |
Address |
Karlsruhe Institute of Technology (KIT) |
Corporate Author |
|
Thesis |
|
Publisher |
Iscram |
Place of Publication |
Albi, France |
Editor |
Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds |
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2411-3387 |
ISBN |
|
Medium |
|
Track |
Protection Models For Complex Critical Infrastructures |
Expedition |
|
Conference |
14th International Conference on Information Systems for Crisis Response And Management |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
2029 |
Share this record to Facebook |
|
|
|
Author  |
Thomas Münzberg; Marcus Wiens; Frank Schultmann |
Title |
The Effect of Coping Capacity Depletion on Critical Infrastructure Resilience |
Type |
Conference Article |
Year |
2015 |
Publication |
ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2015 |
Volume |
|
Issue |
|
Pages |
|
Keywords |
Coping Capacity Consumption; Critical Infrastructure Resilience; Expert Estimations; Multi-Attributive Value Theory; power outages |
Abstract |
Coping capacities (CCs) are often implemented at Critical Infrastructure (CI) facilities to ensure a continuous supply of vital services and products for a population during lifeline disruptions. Through various restrictions, these redundant backups are frequently limited and, hence, only allow a supply continuity for a short duration. The capacity depletes with the duration of the disruptions. In this paper, we discuss how this decrease is evaluated in disaster management. To get an enhanced insight, we introduce to a representative decision problem and used a demonstrative example of a power outage to discuss how decision maker consider the effect of CC depletion and how analytical approaches could address this issue. For doing so an expert survey and an analytical approach were implemented and applied. The comparison and the discussion of the results motivate further research directions on this topic. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
University of Agder (UiA) |
Place of Publication |
Kristiansand, Norway |
Editor |
L. Palen; M. Buscher; T. Comes; A. Hughes |
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2411-3387 |
ISBN |
9788271177881 |
Medium |
|
Track |
Planning, Foresight and Risk Analysis |
Expedition |
|
Conference |
ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management |
Notes |
|
Approved |
yes |
Call Number |
|
Serial |
1321 |
Share this record to Facebook |
|
|
|
Author  |
Thomas Münzberg; Marcus Wiens; Frank Schultmann |
Title |
A strategy evaluation framework based on dynamic vulnerability assessments |
Type |
Conference Article |
Year |
2014 |
Publication |
ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2014 |
Volume |
|
Issue |
|
Pages |
45-54 |
Keywords |
Climate change; Decision support systems; Flood control; Information systems; Linear programming; Multiobjective optimization; Risk perception; Decision supports; Evaluation framework; Flood management; Goal programming; Management strategies; Strategy evaluations; Test strategies; Vulnerability assessments; Risk assessment |
Abstract |
Assessing a system's vulnerability is a widely used method to estimate the effects of risks. In the past years, increasingly dynamic vulnerability assessments were developed to display changes in vulnerability over time (e.g. in climate change, coastal vulnerability, and flood management). This implies that the dynamic influences of management strategies on vulnerability need to be considered in the selection and implementation of strategies. For this purpose, we present a strategy evaluation framework which is based on dynamic vulnerability assessments. The key contribution reported in this paper is an evaluation framework that considers how well strategies achieve a predefined target level of protection over time. Protection Target Levels are predefined objectives. The framework proposed is inspired by Goal Programming methods and allows distinguishing the relevance of time-dependent achievements by weights. This enables decision-makers to evaluate the overall performance of strategies, to test strategies, and to compare the outcome of strategies. |
Address |
Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology, Germany; Institute for Industrial Production, Karlsruhe Institute of Technology, Germany |
Corporate Author |
|
Thesis |
|
Publisher |
The Pennsylvania State University |
Place of Publication |
University Park, PA |
Editor |
S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih. |
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2411-3387 |
ISBN |
9780692211946 |
Medium |
|
Track |
Analytic Modeling and Simulation |
Expedition |
|
Conference |
11th International ISCRAM Conference on Information Systems for Crisis Response and Management |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
798 |
Share this record to Facebook |
|
|
|
Author  |
Thomas Münzberg; Tim Müller; Stella Möhrle; Tina Comes; Frank Schultmann |
Title |
An integrated multi-criteria approach on vulnerability analysis in the context of load reduction |
Type |
Conference Article |
Year |
2013 |
Publication |
ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2013 |
Volume |
|
Issue |
|
Pages |
251-260 |
Keywords |
Decision support systems; Disaster prevention; Information systems; Disaster management; Economy and society; Interdependent infrastructures; Load reduction; Multi-criteria approach; Multi-criteria decision analysis; Vulnerability analysis; Vulnerability assessments; Outages |
Abstract |
Load reduction is an emergency measure to stabilize an electrical grid by decoupling some supply areas to balance the demand and supply of electricity in power grids. In the decoupled areas, power outages may cause important consequences, which may propagate further via the network of interdependent infrastructures. Therefore, support is needed to choose the regions to be decoupled. This paper describes an approach to analyze the risk triggered by load reduction that can be used for disaster management and load reduction scheme optimization. The core of our work is the vulnerability assessment that takes into account the consequences of load reduction on economy and society. The approach facilitates participatory decision support by making the vulnerability of regions especially in urban transparent. |
Address |
Karlsruhe Institute of Technology, Germany |
Corporate Author |
|
Thesis |
|
Publisher |
Karlsruher Institut fur Technologie |
Place of Publication |
KIT; Baden-Baden |
Editor |
T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller |
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2411-3387 |
ISBN |
9783923704804 |
Medium |
|
Track |
Decision Support Systems |
Expedition |
|
Conference |
10th International ISCRAM Conference on Information Systems for Crisis Response and Management |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
796 |
Share this record to Facebook |
|
|
|
Author  |
Thomas Münzberg; Ulrich Berbner; Tina Comes; Hanno Friedrich; Wendelin Groß; Hans-Christian Pfohl; Frank Schultmann |
Title |
Decision support for critical infrastructure disruptions: An integrated approach to secure food supply |
Type |
Conference Article |
Year |
2013 |
Publication |
ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2013 |
Volume |
|
Issue |
|
Pages |
312-316 |
Keywords |
Decision support systems; Disaster prevention; Disasters; Information systems; Risk management; Supply chains; Decision supports; Disaster management; Expert assessment; Integrated approach; Multi-criteria decision analysis; Multicriteria decision support; Supply chain risk management; Supply disruption; Food supply |
Abstract |
Supplies of food and water are essential in disaster management, particularly in the very early chaotic phases when demand and available resources are highly uncertain, information systems are disrupted, and communication between communities, food suppliers, retail and emergency authorities is difficult. As many actors and organisations are involved in ever more complex food supply chains, cooperation and collaboration are vital for efficient and effective disaster management. To support decision-makers facing these problems, this paper introduces a scenario-based approach that integrates simulation of disruptions in food supply chains, and qualitative expert assessment to develop consistent scenarios that show the consequences of different strategies. To choose the best individual measures for all relevant actors and to compare it with the best overall strategy approaches from multi-criteria decision analysis are used. |
Address |
Institute for Nuclear and Energy Technologies, Germany; Supply Chain and Network Management, TU Darmstadt, Germany; Institute for Industrial Production, Germany; Department of Commercial Transport, Institute of Traffic and Transport, Germany; 4flow AG, Germany |
Corporate Author |
|
Thesis |
|
Publisher |
Karlsruher Institut fur Technologie |
Place of Publication |
KIT; Baden-Baden |
Editor |
T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller |
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2411-3387 |
ISBN |
9783923704804 |
Medium |
|
Track |
Decision Support Systems |
Expedition |
|
Conference |
10th International ISCRAM Conference on Information Systems for Crisis Response and Management |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
797 |
Share this record to Facebook |