|   | 
Details
   web
Records
Author (up) Alec Pawling; Tim Schoenharl; Ping Yan; Greg Madey
Title WIPER: An emergency response system Type Conference Article
Year 2008 Publication Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2008
Volume Issue Pages 702-710
Keywords Data mining; Geographic information systems; Information systems; Agent based simulation; Emergency response; Emergency response systems; Emergency situation; Integrated systems; Running simulations; Simulation systems; Web-based front end; Financial data processing
Abstract This paper describes the WIPER system, a proof of concept prototype, and progress made on its development to date. WIPER is intended to provide emergency response managers with an integrated system that detects possible emergencies from cellular communication data, attempts to predict the development of emergency situations, and provides tools for evaluating possible courses of action in dealing with emergency situations. We describe algorithms for detecting anomalies in streaming cellular communication network data, the implementation of a simulation system that validates running simulations with new real world data, and a web-based front end to the WIPER system. We also discuss issues relating to the real-time aggregation of data from the cellular service provider and its distribution to components of the WIPER system.
Address Dept. of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46656, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Washington, DC Editor F. Fiedrich, B. Van de Walle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780615206974 Medium
Track Decentralized and Self-Organizing IT-Infrastructures for Crisis Response and Management Expedition Conference 5th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 836
Share this record to Facebook
 

 
Author (up) André Sabino; Rui Nóbrega; Armanda Rodrigues; Nuno Correia
Title Life-saver: Flood emergency simulator Type Conference Article
Year 2008 Publication Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2008
Volume Issue Pages 724-733
Keywords Computer simulation; Data visualization; Human computer interaction; Information systems; Verification; Agent based simulation; Agent-based approach; Crisis response; Emergency plans; Emergency situation; GIS Integration; Simulation platform; Validation process; Emergency services
Abstract This paper proposes an agent-based simulation system for Dam Break Emergency Plan validation. The proposed system shows that integrating GIS data with an agent-based approach provides a successful simulation platform for the emergency plan validation process. Possible strategies to emergency plan modeling and representation are discussed, proposing a close relation with the actual workflow followed by the entities responsible for the plan's specification. The simulation model is mainly concerned with the location-based and location-motivated actions of the involved agents, describing the likely effects of a specific emergency situation response. The simulator architecture is further described, based on the correspondence between the representation of the plan, and the simulation model. This includes the involving characteristics of the simulation, the simulation engine, the description of the resulting data (for the later evaluation of the emergency plan) and a visualization and interaction component, enabling the dynamic introduction of changes in the scenario progression.
Address IMG (Interactive Multimedia Group), DI and CITI/FCT, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Washington, DC Editor F. Fiedrich, B. Van de Walle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780615206974 Medium
Track Geographic Information Science Expedition Conference 5th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 902
Share this record to Facebook
 

 
Author (up) Douglas A. Samuelson; Matthew Parker; Austin Zimmerman; Loren Miller; Stephen Guerin; Joshua Thorp; Owen Densmore
Title Agent-based simulations of mass egress after Improvised Explosive Device attacks Type Conference Article
Year 2008 Publication Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2008
Volume Issue Pages 59-70
Keywords Computer simulation; Recreation centers; Stadiums; Subway stations; Agent based simulation; Department of Homeland Security; Emergency preparedness; Event management; Improvised explosive devices; Mass egress; Real-time information systems; Science and Technology; Information systems
Abstract For the Science and Technology Directorate (S&T) of the U. S. Department of Homeland Security, we developed agent-based computer simulation models of mass egress from a stadium and a subway station following one or more attacks with Improvised Explosive Devices (IEDs.) Anti-IED countermeasures we modeled included improved guidance to exits, baffles to absorb shock and shrapnel, and, for the stadium, egress onto the playing field. We found improved real-time information systems that provide better guidance to exits would substantially expedite egress and could reduce secondary (trampling and crush) casualties. Our results indicate that models like these can be useful aids to selecting countermeasures, and for training, preparation and exercises. We also discuss the unusual problems such models pose for real-time event management and for validation and evaluation.
Address Serco, United Kingdom; ANSER, United Kingdom; Homeland Security Institute, United States; Redfish Group, United Kingdom
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Washington, DC Editor F. Fiedrich, B. Van de Walle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780615206974 Medium
Track Virtual Systems for Emergency Management Simulation & Training Expedition Conference 5th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 908
Share this record to Facebook
 

 
Author (up) Glenn I. Hawe; Duncan T. Wilson; Graham Coates; Roger S. Crouch
Title STORMI: An agent-based simulation environment for evaluating responses to major incidents in the UK Type Conference Article
Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012
Volume Issue Pages
Keywords Information systems; Multicore programming; Simulators; Storms; Agent based simulation; Emergency preparedness; Emergency response; Major incidents; Mass casualty incidents; Multi-core processor; Multiple program multiple datum; Work-in-progress; Emergency services
Abstract This paper describes work-in-progress regarding STORMI, an agent-based simulation environment for evaluating the response by the emergency services to hypothetical major incidents in the UK. At present, STORMI consists of two main components: a Scenario Designer and a Simulator. The Scenario Designer enables the setting up of a hypothetical multi-site mass casualty incident anywhere in the UK, along with the resources which may be considered for responding to it. This provides input to the Simulator, which through its Multiple Program Multiple Data architecture, models the agents and their environment at a higher level of detail inside incident sites than it does outside, thus focusing attention on the areas of most interest. Furthermore, the multiple programs of the Simulator execute concurrently, thus targeting multi-core processors. © 2012 ISCRAM.
Address School of Engineering and Computing Sciences, Durham University, Durham, United Kingdom
Corporate Author Thesis
Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780864913326 Medium
Track Intelligent Systems Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 124
Share this record to Facebook
 

 
Author (up) Glenn I. Hawe; Graham Coates; Duncan T. Wilson; Roger S. Crouch
Title Design decisions in the development of an agent-based simulation for large-scale emergency response Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Application programs; Information systems; Software agents; User interfaces; Virtual reality; Agent based simulation; Agent behavior; Application requirements; Design decisions; Emergency response; Geographical area; Large-scale emergency; Visual user interfaces; Emergency services
Abstract As part of ongoing research into optimizing the response to large-scale emergencies, an agent-based simulation (ABS) is being developed to evaluate different rescue plans in silico. During the development of this software, decisions regarding its design have been required in order to best satisfy the following specific application requirements: (1) the construction of a sufficiently detailed virtual environment, representing a real geographical area; (2) the programming of a wide variety of agent behaviors using a minimal amount of code; (3) the computational handling of the “large-scale” nature of the emergency; and (4) the presentation of a highly visual user interface, to encourage and facilitate use of the software by practitioners involved in the project. This paper discusses the decisions made in each of these areas, including the novel use of policy-based class design to efficiently program agents. Future developments planned for the software are also outlined.
Address School of Engineering and Computing Sciences, Durham University, Durham, United Kingdom
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Intelligent Systems Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 563
Share this record to Facebook
 

 
Author (up) Graham Coates; Glenn I. Hawe; Duncan T. Wilson; Roger S. Crouch
Title Adaptive co-ordinated emergency response to rapidly evolving large-scale unprecedented events (REScUE) Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Artificial intelligence; Decision support systems; Information systems; Adaptive search method; Agent based simulation; Co-ordination; Decision supports; Emergency response; Geographical locations; Integrated frameworks; Team composition and task allocations; Emergency services
Abstract This paper presents an overview of ongoing research into the development of an integrated framework aimed at adaptive co-ordination of emergency response to dynamic, fast evolving and novel events on a large-scale. The framework consists of (i) a decision support system, supported by rapid adaptive search methods, to enable the real time development of tailored response plans including emergency responder team composition and task allocation to these teams, and (ii) an agent-based simulation of emergency response to large-scale events occurring in real geographical locations. The aim of this research is to contribute to understanding how better agent-based simulation coupled with decision support can be used to enable the effective co-ordination of emergency response, involving the collective efforts and actions of multiple agencies (ambulance services, fire brigades, police forces and emergency planning units), to rapidly evolving large-scale unprecedented events.
Address Durham University, United Kingdom
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Intelligent Systems Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 402
Share this record to Facebook
 

 
Author (up) Heiko Roßnagel; Jan Zibuschka; Olaf Junker
Title On the effectiveness of mobile service notification for passenger egress during large public events Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Benchmarking; Information systems; Agent based simulation; Broadcast messages; Evacuation strategy; Key performance indicators; Large public events; Mobile service; Passenger egress; Simulation; Mobile telecommunication systems
Abstract In this contribution we evaluate the effectiveness of mobile services for passenger egress of a train station during a large public event using an agent-based simulation approach. For this simulation we built a virtual replica of the Cologne central train station and collected empirical data on passenger numbers and their movements during a large public event. We simulate several different scenarios and compare the results using key performance indicators, such as time for egress. Our results show that dedicated cell broadcast messages under the described circumstances can be used to decrease evacuation time significantly and that the simulation can be used to quickly investigate the relevant key performance indicators needed to asses and evaluate the effectiveness of different notification and evacuation strategies.
Address Fraunhofer IAO, Germany; Airport Research Center, Germany
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Early Warning and Alert Systems Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 891
Share this record to Facebook
 

 
Author (up) Heiko Roßnagel; Olaf Junker
Title Evaluation of a mobile emergency management system – A simulation approach Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Civil defense; Disasters; Information systems; Management information systems; Mobile telecommunication systems; Risk management; Systems analysis; Agent based simulation; Emergency management; Emergency management systems; Information delivery; Mobile communications; Mobile service; Multi-agent based simulations; Public events; Information management
Abstract Large public events such as sporting events, concerts, fairs and street festivals are quite common in metropolitan areas. Because of the high frequency of such events and the increasing number of involved parties, those being responsible for the organization and execution have to cope with increasing complexity and shortening time frames for planning and preperation. Because of the high concentration of passengers, unplanned incidents that occur during these public events can have devastating effects and can lead to crises and disasters. Emergency management systems that utilize mobile communication infrastructures can provide prompt information delivery to save human lives. In this paper we propose a system design for mobile emergency management and outline our approach of evaluating this system design using multi-agent based simulation. To make our simulation of passenger movements as realistic as possible we gathered empirical data for a large event as well as for normal rush hour traffic.
Address Fraunhofer IAO, Germany; Airport Research Center, Germany
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Open Track Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 884
Share this record to Facebook
 

 
Author (up) Narjès Bellamine-Ben Saoud; Julie Dugdale; Bernard Pavard; Mohamed Ben Ahmed; Tarek Ben Mna; Néjia Ben Touati
Title Towards planning for emergency activities in large-scale accidents: An interactive and generic agent-based simulator Type Conference Article
Year 2004 Publication Proceedings of ISCRAM 2004 – 1st International Workshop on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2004
Volume Issue Pages 173-177
Keywords Autonomous agents; Information systems; Simulators; User interfaces; Virtual reality; Agent based simulation; Generic; Interactive; Organizing; Rescue plans; Accidents
Abstract In this paper we describe the design and development of an interactive and generic agent based simulator, providing valuable support for organizing the emergency rescue plans of a large-scale accident. Analysis of real rescue activities has been conducted in collaboration with medical experts in order to understand the collaborative process and the involved actors and features. Based on the emergency analysis, an agent-based model and simulator was constructed including (1) the autonomous Agents – representing victims with evolving illness and rescuers (doctors, nurses, fireman) collaborating to rescue the first ones; (2) the Environment -representing the accident site having obstacles and dangerous areas and where the victims are initially spread and the doctors move to explore -perceive – treat and helpers evacuate; (3) the Interactions between rescuers – exploring collectively, evacuating by pairs, communicating directly or via artefacts- (4) the Organization of actors as distributed “independent” sub-teams in various site sub-zones or as a centralized whole team conducted by the rescue chief; and (5) the User interfaces allowing mainly initial configuration of the simulations (e.g. number of victims and states, followed strategies, rescuers behaviours), continuous visual control of the process of rescuing (e.g. site overview with acting-interacting agents, graphics, text descriptions), dynamic changes of parameters of an on-going simulation (e.g. adding new victims, adding new rescuers, or adding dangerous zones or new obstacles on sites) as well as step-by-step simulation. This simulation shows that it is possible to create a virtual environment with cooperating agents interacting in a dynamic environment. On-line and off-line analysis of simulation traces and results enable us first understanding complex situations in rescuing activities in large-scale accidents, and than planning for responding to crisis situation. This simulation approach is useful for identifying the best scenarios and eliminating potential catastrophic combinations of parameters and values, where rescue performance could be significantly impacted. © Proceedings ISCRAM 2004.
Address RIADI-GDL Laboratory, ENSI, Campus Universitaire, 2010 la Manouba, Tunisia; GRIC-IRIT UPS-CNRS (UMR 5505), Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France; IIHM CLIPS-IMAG, 385 Rue de la Bibliothèque, 38041 Grenoble Cedex 9, France
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Brussels Editor B. Van de Walle, B. Carle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9076971080 Medium
Track Emergency Response Simulation and Training Systems Expedition Conference 1st International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 80
Share this record to Facebook
 

 
Author (up) Sadeeb Ottenburger; Thomas Münzberg
Title An Approach for Analyzing the Impacts of Smart Grid Topologies on Critical Infrastructure Resilience Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2017
Volume Issue Pages 400-411
Keywords Smart Grids; Urban Resilience; Agent Based Simulation; Critical Infrastructure Protection; Decision Support
Abstract The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This fact opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of vital services of critical infrastructures. An elaborated topology of smart grids can increase urban resilience. In this paper, we discuss the role of smart grids, give research impulses for examining diverse smart grid topologies and for evaluating their impacts on urban resilience by using an agent based simulation approach which considers smart grid topology as a model parameter.
Address Karlsruhe Institute of Technology (KIT)
Corporate Author Thesis
Publisher Iscram Place of Publication Albi, France Editor Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Protection Models For Complex Critical Infrastructures Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 2029
Share this record to Facebook
 

 
Author (up) Tim Schoenharl; Greg Madey; Gábor Szabó; Albert-László Barabási
Title WIPER: A multi-agent system for emergency response Type Conference Article
Year 2006 Publication Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2006
Volume Issue Pages 282-287
Keywords Computer simulation; Information services; Information systems; Multi agent systems; Multimedia systems; Service oriented architecture (SOA); Web services; Agent based simulation; Emergency planners; Emergency response; Emergency response systems; Emergency situation; GIS modeling; Integrated systems; Web-based interface; Emergency services
Abstract This paper describes the proposed WIPER system. WIPER is intended to provide emergency planners and responders with an integrated system that will help to detect possible emergencies, as well as to suggest and evaluate possible courses of action to deal with the emergency. The system is designed as a multi-agent system using web services and the service oriented architecture. Components of the system for detecting and mitigating emergency situations can be added and removed from the system as the need arises. WIPER is designed to evaluate potential plans of action using a series of GIS enabled Agent-Based simulations that are grounded on realtime data from cell phone network providers. The system relies on the DDDAS concept, the interactive use of partial aggregate and detailed realtime data to continuously update the system and allow emergency planners to stay updated on the situation. The interaction with the system is done using a web-based interface and is composed of several overlaid layers of information, allowing users rich detail and flexibility.
Address University of Notre Dame, Dept of Computer Science and Engineering, Notre Dame, IN 46556, United States; University of Notre Dame, Dept of Physics, Notre Dame, IN 46556, United States
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Newark, NJ Editor B. Van de Walle, M. Turoff
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9090206019; 9789090206011 Medium
Track MULTIAGENT SYSTEMS FOR EMERGENCY MANAGEMENT Expedition Conference 3rd International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 921
Share this record to Facebook
 

 
Author (up) Tomoichi Takahashi
Title Agent-based disaster simulation evaluation and its probability model interpretation Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 369-376
Keywords Disasters; Probability; Agent based simulation; Agent based social simulation; Agent-based approach; Agent-based social simulations; Disaster simulation; Evaluation method; Local government; Probability modeling; Computer simulation
Abstract Agent-based simulations enable the simulation of social phenomenon by representing human behaviors using agents. Human actions such as evacuating to safe havens or extinguishing fires in disaster areas are important during earthquakes. The inclusion of human actions in calculating the damage at disaster sites provides useful data to local governments for planning purposes. In order to practically apply these simulation results, these results should be tested using actual data. Further, these results should be analyzed and explained in a manner that people who are not agent programmers can also understand easily. First, the possibility of applying agent-based approaches to social tasks is shown by comparing the simulation results with those obtained from other methods. Next, we propose a method to present agent behaviors using a probability model and discuss the results of applying this method to the RoboCup Rescue simulation data. These will delve into future research topics for developing agent based social simulations to practical ones.
Address Meijo University, Japan
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track ASCM Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 988
Share this record to Facebook