|   | 
Details
   web
Records
Author Mauro Falasca; Christopher W. Zobel; Deborah Cook
Title (up) A decision support framework to assess supply chain resilience Type Conference Article
Year 2008 Publication Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2008
Volume Issue Pages 596-605
Keywords Artificial intelligence; Decision support systems; Disasters; Information systems; Inventory control; Decision framework; Decision support framework; Quantitative approach; Resilience; Simulation; Supply chain design; Supply chain resiliences; Supply chain systems; Supply chains
Abstract Our research is aimed at developing a quantitative approach for assessing supply chain resilience to disasters, a topic that has been discussed primarily in a qualitative manner in the literature. For this purpose, we propose a simulation-based framework that incorporates concepts of resilience into the process of supply chain design. In this context, resilience is defined as the ability of a supply chain system to reduce the probabilities of disruptions, to reduce the consequences of those disruptions, and to reduce the time to recover normal performance. The decision framework incorporates three determinants of supply chain resilience (density, complexity, and node criticality) and discusses their relationship to the occurrence of disruptions, to the impacts of those disruptions on the performance of a supply chain system and to the time needed for recovery. Different preliminary strategies for evaluating supply chain resilience to disasters are identified, and directions for future research are discussed.
Address Dept. of Business Information Technology, R.B. Pamplin College of Business, Virginia Polytechnic Institute and State University, Blacksburg VA, 24061, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Washington, DC Editor F. Fiedrich, B. Van de Walle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780615206974 Medium
Track Impact of Disasters on Industry and Economic Effects Expedition Conference 5th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 481
Share this record to Facebook
 

 
Author Simone De Kleermaeker; Jan Verkade
Title (up) A decision support system for effective use of probability forecasts Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 290-295
Keywords Artificial intelligence; Decision support systems; Forecasting; Hydrology; Information systems; Uncertainty analysis; Water management; Decision support system (dss); Hydrological forecast; Management decisions; Multidimensional problems; Predictive uncertainty; Probabilistic forecasts; Probability forecasts; Risk-based decisions; Decision making
Abstract Often, water management decisions are based on hydrological forecasts, which are affected by inherent uncertainties. It is increasingly common for forecasters to make explicit estimates of these uncertainties. Associated benefits include the decision makers' increased awareness of forecasting uncertainties and the potential for risk-based decision-making. Also, a more strict separation of responsibilities between forecasters and decision maker can be made. A recent study identified some issues related to the effective use of probability forecasts. These add a dimension to an already multi-dimensional problem, making it increasingly difficult for decision makers to extract relevant information from a forecast. Secondly, while probability forecasts provide a necessary ingredient for risk-based decision making, other ingredients may not be fully known, including estimates of flood damage and costs and effect of damage reducing measures. Here, we present suggestions for resolving these issues and the integration of those solutions in a prototype decision support system (DSS). A pathway for further development is outlined.
Address Deltares, Delft, Netherlands; Water Management Centre of Netherlands, Ministry of Infrastructure and the Environment, Storm Surge Forecasting Service, Lelystad, Netherlands; Delft University of Technology, Delft, Netherlands
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Decision Support Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 432
Share this record to Facebook
 

 
Author Axel Schulz; Tung Dang Thanh; Heiko Paulheim; Immanuel Schweizer
Title (up) A fine-grained sentiment analysis approach for detecting crisis related microposts Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 846-851
Keywords Artificial intelligence; Information systems; Learning systems; Risk management; Social networking (online); Amount of information; Emergency management; Microposts; Real-time information; Sentiment analysis; Situational awareness; Systematic evaluation; Twitter; Data mining
Abstract Real-time information from microposts like Twitter is useful for applications in the crisis management domain. Currently, that potentially valuable information remains mostly unused by the command staff, mainly because the sheer amount of information cannot be handled efficiently. Sentiment analysis has been shown as an effective tool to detect microposts (such as tweets) that contribute to situational awareness. However, current approaches only focus on two or three emotion classes. But using only tweets with negative emotions for crisis management is not always sufficient. The amount of remaining information is still not manageable or most of the tweets are irrelevant. Thus, a more fine-grained differentiation is needed to identify relevant microposts. In this paper, we show the systematic evaluation of an approach for sentiment analysis on microposts that allows detecting seven emotion classes. A preliminary evaluation of our approach in a crisis related scenario demonstrates the applicability and usefulness.
Address Technische Universität Darmstadt, Germany; Universität Mannheim, Germany
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Social Media Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 927
Share this record to Facebook
 

 
Author John R. Harrald; Theresa I. Jefferson; Frank Fiedrich; Sebnem Sener; Clinton Mixted-Freeman
Title (up) A first step in decision support tools for humanitarian assistance during catastrophic disasters: Modeling hazard generated needs Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 51-56
Keywords Artificial intelligence; Disasters; Hazards; Catastrophic earthquake; Catastrophic event; Decision support tools; Decision supports; Emergency responders; Humanitarian assistances; Humanitarian relief; Paper documents; Decision support systems
Abstract The US has not yet developed adequate models for estimating hazard generated needs, the necessary first step for developing useful decision support systems needed to estimate the capability and capacity of the response forces required. Modeling and technology required to support the decisions made by humanitarian relief organizations requires scenario driven catastrophic planning. This paper documents the lack of effective decision support tools and systems for humanitarian aid and describes the current state of models and methods used for determination of hazard generated needs. The paper discusses work performed on a catastrophic earthquake preparedness project. It outlines how the results of this project will be used to advance the modeling and decision support capabilities of federal, state and local disaster planners and emergency responders.
Address George Washington University (GWU), Institute for Crisis, Disaster, and Risk Management (ICDRM), United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track HOPS Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 561
Share this record to Facebook
 

 
Author Albert Y. Chen; Feniosky Peña-Mora; Saumil J. Mehta; Stuart Foltz; Albert P. Plans; Brian R. Brauer; Scott Nacheman
Title (up) A GIS approach to equipment allocation for structural stabilization and civilian rescue Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Artificial intelligence; Decision support systems; Disaster prevention; Disasters; Geographic information systems; Information systems; Lifesaving equipment; Radio frequency identification (RFID); Equipment allocation; Illinois fire service institutes; Resource repositories; Situational awareness; Structural condition; Structural stabilization; Urban search and rescue; Urban search and rescue operations; Emergency services
Abstract Efficient request and deployment of critical resources for urban search and rescue operations is vital to emergency response. This paper presents a RFID (Radio Frequency Identification) supported system for on-site data collection to communicate structural condition, to track search and rescue status, and to request and allocate appropriate resources. The system provides a unified interface for efficient posing, gathering, storing and sharing of building assessment information. Visualization and easy access of such information enables rescuers to response to the disaster with better situational awareness. Resource requests are sent to the GIS resource repository service that enables a visual disaster management environment for resource allocation. Request and deployment of critical resources through this system enables lifesaving efforts, with the appropriate equipment, operator, and materials, become more efficient and effective. System development at the Illinois Fire Service Institute has shown promising results.
Address University of Illinois, Urbana-Champaign, United States; Columbia University, United States; Construction Engineering Research Lab, United States; Universitat of Politècnica, Catalunya, Spain; Illinois Fire Service Institute, United States; Thornton Tomasetti, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Open Track Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 388
Share this record to Facebook
 

 
Author Gary M. Fetter; Mauro Falasca; Christopher W. Zobel; Terry R. Rakes
Title (up) A multi-stage decision model for debris disposal operations Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Artificial intelligence; Decision support systems; Information systems; Optimization; Stochastic programming; Clean-up operations; Debris cleanup; Decision makers; Decision modeling; Hurricane katrina; Initial resources; Multi-stage programming; Resource capacity; Debris
Abstract As shown by Hurricane Katrina, disposing of disaster-generated debris can be quite challenging. Extraordinary amounts of debris far exceeding typical annual amounts of solid waste are almost instantaneously deposited across a widespread area. Although the locations and amounts of debris can be easily summarized looking back after recovery activities have been completed, they are uncertain and difficult at best to estimate as debris operations begin to unfold. Further complicating matters is that the capacity of cleanup resources, which is dependent upon available equipment, labor, and subcontractors, can fluctuate during on-going cleanup operations. As a result, debris coordinators often modify initial resource assignments as more accurate debris estimates and more stable resource capacities become known. In this research, we develop a computer-based decision support system that incorporates a multi-stage programming model to assist decision makers with allocating debris cleanup resources immediately following a crisis event and during ongoing operations as debris volumes and resource capacities become known with increasing certainty.
Address Dept. of Business Information Technology, Pamplin College of Business, Virginia Tech, United States; Dept. of Information Systems and Operations Management, Sellinger School of Business, Loyola University Maryland, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Open Track Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 491
Share this record to Facebook
 

 
Author Duco N. Ferro; Jeroen M. Valk; Alfons H. Salden
Title (up) A robust coalition formation framework for mobile surveillance incident management Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 479-488
Keywords Artificial intelligence; Decision support systems; Knowledge management; Robustness (control systems); Security systems; Coalition formations; Coordination; Incident Management; Mobile surveillance; Reconfiguration; Scale-space; Network security
Abstract Given unexpected incidents on routes of guards that check security objects, like banks, one of the most challenging problems is still how to support improvisation by security personnel in taking decisions to prevent or resolve such incidents. Another as important associated problem is how a security company can naturally take advantage of its existing and novel knowledge about its organizational and ICT infrastructures, and the introduction of a decision support system to help leverage of improvisation by humans. To tackle all this, on the one hand we present a dynamic coalition formation framework that allows the (re)configurations of agents that are associated with joint tasks in situational contexts to be evaluated by appropriate value functions. On the other hand, we present a dynamic scale-space paradigm that allows a security company to distill ranked lists of robust context-dependent reconfigurations at critical scales. We highlight the merits of ASK-ASSIST as a solution to the problem of supporting human improvisation.
Address Almende B. V., Netherlands
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track IMPR Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 489
Share this record to Facebook
 

 
Author Carole Adam; Cédric Lauradoux
Title (up) A Serious Game for Debating about the Use of Artificial Intelligence during the COVID-19 Pandemic Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 554-563
Keywords Serious game; Artificial Intelligence; COVID-19; education
Abstract Crises always impose a difficult compromise between safety and liberty, and the COVID-19 pandemic is no different. Governments have enforced various sanitary restrictions to reduce virus spread. With the help of Artificial Intelligence (AI), the scale of surveillance has risen to unprecedented levels. However, these technologies entail many risks, from potential errors or biases, to their extended enforcement beyond the duration of the initial crisis. Citizens should be aware that these technologies are not infallible, and measure the consequences of errors, so as to make informed decisions about what they want to accept, and for how long. To this aim, we have designed a serious game in the form of a municipal debate between citizens of a virtual town. Some first test sessions helped us improve the game design, and provided proof of the interest of this game to trigger debates and raise awareness.
Address Univ. Grenoble-Alpes – LIG; Univ. Grenoble-Alpes – INRIA
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Reimagining Ethical, Legal, and Social Issues in a COVID Era Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2439
Share this record to Facebook
 

 
Author Firoj Alam; Ferda Ofli; Muhammad Imran; Michael Aupetit
Title (up) A Twitter Tale of Three Hurricanes: Harvey, Irma, and Maria Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 553-572
Keywords social media, artificial intelligence, image processing, supervised classification, disaster management
Abstract People increasingly use microblogging platforms such as Twitter during natural disasters and emergencies. Research studies have revealed the usefulness of the data available on Twitter for several disaster response tasks. However, making sense of social media data is a challenging task due to several reasons such as limitations of available tools to analyze high-volume and high-velocity data streams. This work presents an extensive multidimensional analysis of textual and multimedia content from millions of tweets shared on Twitter during the three disaster events. Specifically, we employ various Artificial Intelligence techniques from Natural Language Processing and Computer Vision fields, which exploit different machine learning algorithms to process the data generated during the disaster events. Our study reveals the distributions of various types of useful information that can inform crisis managers and responders as well as facilitate the development of future automated systems for disaster management.
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Social Media Studies Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2131
Share this record to Facebook
 

 
Author Rianne Gouman; Masja Kempen; Niek Wijngaards
Title (up) Actor-agent team experimentation in the context of incident management Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Artificial intelligence; Human resource management; Information systems; Intelligent agents; Actor-agent teaming; Artificial intelligent; Comparative experiments; Empirical research method; Experimentation; Performance indicators; Simulation; Simulation toolkits; Experiments
Abstract The collaboration between humans (actors) and artificial entities (agents) can be a potential performance boost. Agents, as complementary artificial intelligent entities, can alleviate actors from certain activities, while enlarging the collective effectiveness. This paper describes our approach for experimentation with actors, agents and their interaction. This approach is based on a principled combination of existing empirical research methods and is illustrated by a small experiment which assesses the performance of a specific actor-agent team in comparison with an actor-only team in an incident management context. The REsearch and Simulation toolKit (RESK) is instrumental for controlled and repeatable experimentation. The indicative findings show that the approach is viable and forms a basis for further data collection and comparative experiments. The approach supports applied actor-agent research to show its (dis)advantages as compared to actor-only solutions.
Address D-CIS Lab, Thales Research and Technology NL, Netherlands
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Research Methods Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 539
Share this record to Facebook
 

 
Author Graham Coates; Glenn I. Hawe; Duncan T. Wilson; Roger S. Crouch
Title (up) Adaptive co-ordinated emergency response to rapidly evolving large-scale unprecedented events (REScUE) Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Artificial intelligence; Decision support systems; Information systems; Adaptive search method; Agent based simulation; Co-ordination; Decision supports; Emergency response; Geographical locations; Integrated frameworks; Team composition and task allocations; Emergency services
Abstract This paper presents an overview of ongoing research into the development of an integrated framework aimed at adaptive co-ordination of emergency response to dynamic, fast evolving and novel events on a large-scale. The framework consists of (i) a decision support system, supported by rapid adaptive search methods, to enable the real time development of tailored response plans including emergency responder team composition and task allocation to these teams, and (ii) an agent-based simulation of emergency response to large-scale events occurring in real geographical locations. The aim of this research is to contribute to understanding how better agent-based simulation coupled with decision support can be used to enable the effective co-ordination of emergency response, involving the collective efforts and actions of multiple agencies (ambulance services, fire brigades, police forces and emergency planning units), to rapidly evolving large-scale unprecedented events.
Address Durham University, United Kingdom
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Intelligent Systems Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 402
Share this record to Facebook
 

 
Author Kelli de Faria Cordeiro; Maria Luiza M Campos; Marcos R. S. Borges
Title (up) Adaptive integration of information supporting decision making: A case on humanitarian logistic Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 225-229
Keywords Artificial intelligence; Decision support systems; Information systems; Natural language processing systems; Graph database; Heterogeneous information; Humanitarian logistics; Knowledge integration; Linked open datum; Multi-perspective views; Relational data models; Semantic representation; Decision making
Abstract There is an urgent demand for information systems to gather heterogeneous information about needs, donations and warehouse stocks to provide an integrated view for decision making in humanitarian logistics. The dynamic flow of information, due to the unpredicted events, requires adaptive features. The traditional relational data model is not suitable due to its schema rigidity. As an alternative, Graph Data models complemented by semantic representations, like Linked Open Data on the Web, can be used. Based on both, this research proposes an approach for the adaptive integration of information and an associated architecture. An application example is discussed in a real scenario where relief goods are managed through a dynamic and multi-perspective view.
Address Center for Naval Systems Analysis of Brazilian Navy, Federal University of Rio de Janeiro, Brazil; Federal University of Rio de Janeiro, Brazil
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Decision Support Systems Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 414
Share this record to Facebook
 

 
Author Anne Marie Barthe; Sébastien Truptil; Frédérick Bénaben
Title (up) Agility of crisis response: Gathering and analyzing data through an event-driven platform Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 250-254
Keywords Artificial intelligence; Decision support systems; Agility; Collaborative process; Complex event processing; Crisis response; Crisis situations; Event-driven architectures; Information concerning; Nuclear accidents; Information systems
Abstract The goal of this article is to introduce a platform (called Agility Service) that gathers and analyses data coming from both crisis response and crisis field by using the principles of Complex Event Processing. As a crisis situation is an unstable phenomenon (by nature or by effect of the applied response), the crisis response may be irrelevant after a while: lack of resources, arrival of a new stakeholder, unreached objectives, over-crisis, etc. Gathering data, analyze and aggregate it to deduce relevant information concerning the current crisis situation, and making this information available to the crisis cell to support decision making: these are the purposes of the described platform. A use case based on the Fukushima's nuclear accident is developed to illustrate the use of the developed prototype.
Address University of Toulouse – Mines Albi, France
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Decision Support Systems Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 291
Share this record to Facebook
 

 
Author Flávio E. A. Horita; João Porto De Albuquerque
Title (up) An approach to support decision-making in disaster management based on volunteer geographic information (VGI) and spatial decision support systems (SDSS) Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 301-306
Keywords Artificial intelligence; Decision making; Decision support systems; Disaster prevention; Information systems; Disaster management; Extreme events; Geographic information; Spatial decision support systems; Updated informations; Vgi; Volunteered geographic information; Work-in-progress; Disasters
Abstract The damage caused by recent events in Japan in 2011 and USA in 2012 highlighted the need to adopt measures to increase the resilience of communities against extreme events and disasters. In addition to the conventional and official information that is necessary for adaptation to disasters, recently, common citizens residents in the affected areas also began contributing with voluntary qualified and updated information. In this context, this work-in-progress presents an approach that uses voluntary information – Also known by VGI (Volunteered Geographic Information) – As a data source for Spatial Decision Support Systems (SDSS) in order to assist the decision-making in disaster management. Our approach consists of a framework that integrates voluntary and conventional data, a SDSS and processes and methods for decision-making. As a result, it is expected that this approach will assist official organizations in disaster management by providing mechanisms and information.
Address Department of Computer Systems, ICMC University of São Paulo, São Carlos/SP, Brazil
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Decision Support Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 592
Share this record to Facebook
 

 
Author Alicia Cabañas Ibañez; Dirk Schwanenberg; Luis Garrote De Marcos; Miguel Francés Mahamud; Javier Arbaizar González
Title (up) An example of Flood Forecasting and Decision-Support System for water management in Spain Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Artificial intelligence; Computer simulation; Decision support systems; Flood control; Hydraulic tools; Information systems; Reservoir management; Water management; Data-sources; Early warning; Early Warning System; Flood forecasting; Flood management; Open-shell; Floods
Abstract The paper provides an overview of past, present and future development in the program to implement a Flood Forecasting and Decision-Support System (DSS) for the SAIH network in some Spanish basins. These tools represent a significant advance by embedding the decision-making components for management of hydraulic infrastructure into the flood forecasting and flood early warning procedures. The DSS has been implemented based on an open-shell platform for integrating various data sources and different simulation models. So far, it covers the Segura, Jucar, Tajo, Duero and Miño-Sil basins, which represent 42% of Spanish territory. Special attention is paid to the decision-support for the operation of the 66 major reservoirs as a fundamental part of flood management.
Address KV Consultores, Madrid, Spain; Deltares, Operational Water Management, Delft, Netherlands; Universidad Politécnica de Madrid, Spain; Dirección General Del Agua, Spain
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Early Warning and Alert Systems Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 609
Share this record to Facebook
 

 
Author Mark Gaynor; Reuven Messer; Dan Myung; Steve Moulton
Title (up) Applications for emergency medical services Type Conference Article
Year 2006 Publication Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2006
Volume Issue Pages 579-591
Keywords Artificial intelligence; Emergency services; Hospitals; Information systems; Mobile computing; Mobile devices; Resuscitation; Web services; Current technology; Data transport; Emergency medical services; Emerging technologies; First responders; Patient care; Research efforts; Wireless sensor; Medical computing
Abstract Today, despite the obvious need, pre-hospital providers cannot send real-time electronic patient care information from the field to a receiving hospital. This lack of field awareness and inability to plan for the arrival-or anticipate the needs-of seriously ill or injured patients can lead to the misdirection of patients and the loss of valuable time in the early phases of resuscitation. We believe, however, that current technology can address these shortcomings and that is the focus of our research efforts. This paper discusses how several countries, including Israel, Sweden, Britain and the United States, are addressing the need to better triage patients from the field to an appropriate hospital or trauma center. It also introduces a potential solution, called iRevive, which uses emerging technology such as sensors, wireless WAN data transport, web services, artificial intelligence, and mobile devices to meet the dynamic needs of first responders and the hospitals they serve.
Address Boston University, School of Management, 10 Blade, United States
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Newark, NJ Editor B. Van de Walle, M. Turoff
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9090206019; 9789090206011 Medium
Track PERSONAL AREA NETWORKS FOR EMERGENCY RESPONSE Expedition Conference 3rd International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 523
Share this record to Facebook
 

 
Author Wolfgang Raskob; Florian Gering; Valentin Bertsch
Title (up) Approaches to visualisation of uncertainties to decision makers in an operational decision support system Type Conference Article
Year 2009 Publication ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives Abbreviated Journal ISCRAM 2009
Volume Issue Pages
Keywords Artificial intelligence; Decision support systems; Information systems; Risk management; Visualization; Agricultural management; Decision making process; Operational decision support; Radiological emergency; Rodos; Uncertain informations; Uncertainties; Uncertainty handling; Decision making
Abstract Decision making in case of any emergency is associated with uncertainty of input data, model data and changing preferences in the decision making process. Uncertainty handling was from the beginning an integral part of the decision support system RODOS for the off-site emergency management following nuclear or radiological emergencies. What is missing so far is the visualisation of the uncertainties in the results of the model calculations. In this paper we present the first attempt to visualise uncertain information in the early and late phase of the decision making process. For the early phase, the area of sheltering was selected as example. For the later phase, the results of the evaluation subsystem of RODOS were selected being used for the analysis of remediation measures such as agricultural management options. Both attempts are still under discussion but the presentation of the early phase uncertainty will be realised in the next version.
Address Forschungszentrum Karlsruhe (FZK), Karlsruhe, Germany; Federal Office for Radiation Protection, Neuherberg, Germany; Karlsruhe Institute of Technology, Karlsruhe, Germany
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Gothenburg Editor J. Landgren, S. Jul
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789163347153 Medium
Track Open Track Expedition Conference 6th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 870
Share this record to Facebook
 

 
Author Niels Netten; Maarten Van Someren
Title (up) Automated support for dynamic information distribution in incident management Type Conference Article
Year 2006 Publication Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2006
Volume Issue Pages 230-237
Keywords Artificial intelligence; Information systems; Adaptive information; Automated support; Dynamic information; Emergency response personnels; Group communications; Incident Management; Machine learning methods; Simulated experiments; Learning systems
Abstract For all emergency response personnel involved in crisis situations it is essential to timely acquire all information critical to their task performance. However, in practice errors occur in the distribution of information between these collaborating actors leading to mistakes and subsequently more damage to the situation. In this paper we present a prototype system for dynamic information distribution able to support the information flow between collaborating crisis actors. The system has been evaluated by means of simulated experiments that use data from a real incident scenario. The results indicate that automated support by means of Machine Learning method works well. Especially, when actor work context features are included, then the performance on selecting and distributing relevant information is high. Furthermore, actors acquire relevant information much faster making group communication much more efficient.
Address Human-Computer Studies Laboratory, Informatics Institute, University of Amsterdam (UvA), Netherlands
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Newark, NJ Editor B. Van de Walle, M. Turoff
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9090206019; 9789090206011 Medium
Track COMMAND AND CONTROL Expedition Conference 3rd International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 807
Share this record to Facebook
 

 
Author Simon French; Carmen Niculae
Title (up) Believe in the model: Mishandle the emergency Type Conference Article
Year 2004 Publication Proceedings of ISCRAM 2004 – 1st International Workshop on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2004
Volume Issue Pages 9-14
Keywords Artificial intelligence; Civil aviation; Civil defense; Decision making; Decision support systems; Disasters; Forecasting; Information systems; Risk management; Crisis management; Cynefin; Decision support system (dss); Emergency management; Model prediction; Uncertainty; Economic and social effects
Abstract During the past quarter century there have been many developments in scientific models and computer codes to help predict the ongoing consequences in the aftermath of many types of emergency: e.g. storms and flooding, chemical and nuclear accident, epidemics such as SARS and terrorist attack. Some of these models relate to the immediate events and can help in managing the emergency; others predict longer term impacts and thus can help shape the strategy for the return to normality. But there are many pitfalls in the way of using these models effectively. Firstly, non-scientists and, sadly, many scientists believe in the models' predictions too much. The inherent uncertainties in the models are underestimated; sometimes almost unacknowledged. This means that initial strategies may need to be revised in ways that unsettle the public, losing their trust in the emergency management process. Secondly, the output from these models form an extremely valuable input to the decision making process; but only one such input. Most emergencies are events that have huge social and economic impacts alongside the health and environmental consequences. While we can model the latter passably well, we are not so good at modelling economic impacts and very poor at modelling social impacts. Too often our political masters promise the best 'science-based' decision making and too late realise that the social and economic impacts need addressing. In this paper, we explore how model predictions should be drawn into emergency management processes in more balanced ways than often has occurred in the past. © Proceedings ISCRAM 2004.
Address Manchester Business School, University of Manchester, Booth Street West, Manchester M15 6PB, United Kingdom
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Brussels Editor B. Van de Walle, B. Carle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9076971080 Medium
Track Conference Keynote Expedition Conference 1st International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 111
Share this record to Facebook
 

 
Author Michael E. Stiso; Aslak Wegner Eide; Ragnhild Halvorsrud; Erik G. Nilsson; Jan Håvard Skjetne
Title (up) Building a flexible common operational picture to support situation awareness in crisis management Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 220-229
Keywords Artificial intelligence; Decision support systems; Risk management; Common operational picture; Crisis management; Decision supports; Situation awareness; User research; Information systems
Abstract Decision support systems for emergency management tend to focus on making a lot of data meaningful to particular users via a common operational picture (COP). This paper describes one such system, but one that goes further by making the COP flexible enough to support multiple users. Large crises involve frequent role switching between different actors in a response. Hence, predicting the support needs of a given user of a COP is difficult at best, complicating the design process. The solution described here is to use interactive information overlays to enable different users to fit the COP to their particular SA needs. The design was evaluated in two user workshops and a demonstration. In general, it was well-received, but domain experts cautioned that the tool must be usable not only in large crises but in everyday operations, or else it will not be used.
Address SINTEF ICT, Norway
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Decision Support Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 976
Share this record to Facebook
 

 
Author Cornelia Caragea; Nathan McNeese; Anuj Jaiswal; Greg Traylor; Hyun-Woo Kim; Prasenjit Mitra; Dinghao Wu; Andrea H. Tapia; Lee Giles; Bernard J. Jansen; John Yen
Title (up) Classifying text messages for the haiti earthquake Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Abstracting; Artificial intelligence; Disaster prevention; Information systems; Learning systems; Text processing; Disaster relief; Emergency response; Emergency situation; Haiti earthquakes; Information technology infrastructure; Nongovernmental organizations; Relief workers; Self-organizing behavior; Earthquakes
Abstract In case of emergencies (e.g., earthquakes, flooding), rapid responses are needed in order to address victims' requests for help. Social media used around crises involves self-organizing behavior that can produce accurate results, often in advance of official communications. This allows affected population to send tweets or text messages, and hence, make them heard. The ability to classify tweets and text messages automatically, together with the ability to deliver the relevant information to the appropriate personnel are essential for enabling the personnel to timely and efficiently work to address the most urgent needs, and to understand the emergency situation better. In this study, we developed a reusable information technology infrastructure, called Enhanced Messaging for the Emergency Response Sector (EMERSE), which classifies and aggregates tweets and text messages about the Haiti disaster relief so that non-governmental organizations, relief workers, people in Haiti, and their friends and families can easily access them.
Address College of Information Sciences and Technology, Pennsylvania State University, University Park, PA-16801, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Analytical Information Systems Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 371
Share this record to Facebook
 

 
Author Tsai, C.-H.; Rayi, P.; Kadire, S.; Wang, Y.-F.; Krafka, S.; Zendejas, E.; Chen, Y.-C.
Title (up) Co-Design Disaster Management Chatbot with Indigenous Communities Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 1-12
Keywords Native American; Emergency Management; Artificial intelligence; Conversational Agent; Human-Centered Computing
Abstract Indigenous communities are disproportionately impacted by rising disaster risk, climate change, and environmental degradation due to their close relationship with the environment and its resources. Unfortunately, gathering the necessary information or evidence to request or co-share sufficient funds can be challenging for indigenous people and their lands. This paper aims to co-design an AI-based chatbot with two tribes and investigate their perception and experience of using it in disaster reporting practices. The study was conducted in two stages. Firstly, we interviewed experienced first-line emergency managers and invited tribal members to an in-person design workshop. Secondly, based on qualitative analysis, we identified three themes of emergency communication, documentation, and user experience. Our findings support that indigenous communities favored the proposed Emergency Reporter chatbot solution. We further discussed how the proposed chatbot could empower the tribes in disaster management, preserve sovereignty, and seek support from other agencies.
Address Technical University of Darmstadt
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Usability and Universal Design of ICT for Emergency Management Expedition Conference
Notes http://dx.doi.org/10.59297/RZLJ7481 Approved no
Call Number ISCRAM @ idladmin @ Serial 2501
Share this record to Facebook
 

 
Author Marie Bartels
Title (up) Communicating probability: A challenge for decision support systems Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 260-264
Keywords Artificial intelligence; Critical infrastructures; Decision making; Information systems; Public works; Crisis communications; Crisis management; Decision-making under uncertainty; Inter-organizational; Interorganizational cooperation; Making decision; Decision support systems
Abstract This paper presents observations made in the course of two interorganizational crisis management exercises that were conducted in order to identify requirements for a decision support system for critical infrastructure operators. It brings into focus how different actors deal with the uncertainty of information that is relevant for other stakeholders and therefore is to be shared with them. It was analyzed how the participants articulated und comprehended assessments on how probable the reliability of a given data or prognosis was. The recipients of the information had to consider it when making decisions concerning their own network. Therefore they had to evaluate its reliability. Different strategies emerged.
Address Technische Universität Berlin, Germany
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Decision Support Systems Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 289
Share this record to Facebook
 

 
Author Oduor Erick Nelson Otieno; Anna Gryszkiewicz; Nihal Siriwardanegea; Fang Chen
Title (up) Concept for intelligent integrated system for crisis management Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Artificial intelligence; Decision support systems; Information systems; Cell phone; Crisis management; Integrated systems; Intelligent decision support; Significant points; Standalone applications; Support systems; User friendly interface; Decision making
Abstract In this document, we describe the need for providing a uniform common picture that is missing in several crisis management decision support tools. Through research, we have reviewed some existing crisis management support systems in use and noted key user requirements that these tools are missing. A significant point of this research is to stress the importance of developing a decision support system that would improve the way an ideal support system would collect, analyze and disseminate necessary information to a crisis management decision maker. We also note the importance of ensuring that such a tool presents information to its user over a user friendly interface. The structure thus developed should be a standalone application that could be incorporated into existing platforms (Rinkineva, 2004) such as cell phones, PDAs and laptops.
Address Chalmers Institute of Technology, Sweden; Chalmers Institute of Technology, Computer Science and Engineering, Sweden
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Intelligent Systems Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 820
Share this record to Facebook
 

 
Author Alexander Smirnov; Tatiana Levashova; Nikolay Shilov
Title (up) Context-based knowledge fusion patterns in decision support system for emergency response Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 597-606
Keywords Artificial intelligence; Decision support systems; Information systems; Context-Aware; Context-based; Decision supports; Emergency response; Internal structure; Knowledge fusion; Knowledge sources; Operational stages; Emergency services
Abstract The purpose of this paper is discovery of context-based knowledge fusion patterns. Knowledge fusion is considered as an appearance of new knowledge in consequence of processes ongoing in decision support systems. The knowledge fusion processes are considered within a system intended to support decisions on planning emergency response actions. The knowledge fusion patterns are generalized with regard to preservation of internal structures and autonomies of information and knowledge sources involved in the knowledge fusion and to knowledge fusion results. The found patterns give a general idea of knowledge fusion processes taking place at the operational stage of decision support system functioning, i.e. the stage where context-aware functions of the system come into operation. As a practical application, such patterns can support engineers with making choice of knowledge sources to be used in the systems they design.
Address St. Petersburg Institute for Informatics and Automation, Russian Academy of Sciences (SPIIRAS), St.-Petersburg, Russian Federation; SPIIRAS, St.-Petersburg, Russian Federation
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Intelligent Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 960
Share this record to Facebook