|   | 
Details
   web
Records
Author Benny Carlé; Fernand Vermeersch; Carlos Rojas Palma
Title Systems improving communication in case of a nuclear emergency: Two information exchange systems in the Belgian Nuclear Research Center Type Conference Article
Year 2004 Publication Proceedings of ISCRAM 2004 – 1st International Workshop on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2004
Volume Issue Pages 57-62
Keywords Artificial intelligence; Civil defense; Communication systems; Decision support systems; Information management; Information systems; Radioactive materials; Risk management; Crisis communications; Crisis response; Decision support system (dss); Emergency management; Emergency response; Nuclear emergencies; Emergency services
Abstract Creating a 'common view' between all stakeholders on the course of an emergency situation and the possible consequences is a challenge for any crisis management organisation. In the SCKâEUR¢CEN nuclear emergency preparedness research two projects address two different and particular communication or information management challenges. The HINES system aims at creating a common view by using an information system as a communication tool in an on-site nuclear emergency response room. The MODEM project uses XML-technology to stimulate communication between scientific experts from different countries and institutes by facilitating the exchange of information used in decision support models used to assess the impact of a release of radioactive material in the environment. Both systems are implemented in prototype phase and used regularly during exercises. © Proceedings ISCRAM 2004.
Address SCK CEN, Belgian Nuclear Research Center, Boeretang 200, 2400 Mol, Belgium
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Brussels Editor B. Van de Walle, B. Carle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9076971080 Medium
Track Poster Session Expedition Conference 1st International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 89
Share this record to Facebook
 

 
Author Simone De Kleermaeker; Jan Verkade
Title A decision support system for effective use of probability forecasts Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 290-295
Keywords Artificial intelligence; Decision support systems; Forecasting; Hydrology; Information systems; Uncertainty analysis; Water management; Decision support system (dss); Hydrological forecast; Management decisions; Multidimensional problems; Predictive uncertainty; Probabilistic forecasts; Probability forecasts; Risk-based decisions; Decision making
Abstract Often, water management decisions are based on hydrological forecasts, which are affected by inherent uncertainties. It is increasingly common for forecasters to make explicit estimates of these uncertainties. Associated benefits include the decision makers' increased awareness of forecasting uncertainties and the potential for risk-based decision-making. Also, a more strict separation of responsibilities between forecasters and decision maker can be made. A recent study identified some issues related to the effective use of probability forecasts. These add a dimension to an already multi-dimensional problem, making it increasingly difficult for decision makers to extract relevant information from a forecast. Secondly, while probability forecasts provide a necessary ingredient for risk-based decision making, other ingredients may not be fully known, including estimates of flood damage and costs and effect of damage reducing measures. Here, we present suggestions for resolving these issues and the integration of those solutions in a prototype decision support system (DSS). A pathway for further development is outlined.
Address Deltares, Delft, Netherlands; Water Management Centre of Netherlands, Ministry of Infrastructure and the Environment, Storm Surge Forecasting Service, Lelystad, Netherlands; Delft University of Technology, Delft, Netherlands
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Decision Support Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 432
Share this record to Facebook
 

 
Author Simon French; Carmen Niculae
Title Believe in the model: Mishandle the emergency Type Conference Article
Year 2004 Publication Proceedings of ISCRAM 2004 – 1st International Workshop on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2004
Volume Issue Pages 9-14
Keywords Artificial intelligence; Civil aviation; Civil defense; Decision making; Decision support systems; Disasters; Forecasting; Information systems; Risk management; Crisis management; Cynefin; Decision support system (dss); Emergency management; Model prediction; Uncertainty; Economic and social effects
Abstract During the past quarter century there have been many developments in scientific models and computer codes to help predict the ongoing consequences in the aftermath of many types of emergency: e.g. storms and flooding, chemical and nuclear accident, epidemics such as SARS and terrorist attack. Some of these models relate to the immediate events and can help in managing the emergency; others predict longer term impacts and thus can help shape the strategy for the return to normality. But there are many pitfalls in the way of using these models effectively. Firstly, non-scientists and, sadly, many scientists believe in the models' predictions too much. The inherent uncertainties in the models are underestimated; sometimes almost unacknowledged. This means that initial strategies may need to be revised in ways that unsettle the public, losing their trust in the emergency management process. Secondly, the output from these models form an extremely valuable input to the decision making process; but only one such input. Most emergencies are events that have huge social and economic impacts alongside the health and environmental consequences. While we can model the latter passably well, we are not so good at modelling economic impacts and very poor at modelling social impacts. Too often our political masters promise the best 'science-based' decision making and too late realise that the social and economic impacts need addressing. In this paper, we explore how model predictions should be drawn into emergency management processes in more balanced ways than often has occurred in the past. © Proceedings ISCRAM 2004.
Address Manchester Business School, University of Manchester, Booth Street West, Manchester M15 6PB, United Kingdom
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Brussels Editor B. Van de Walle, B. Carle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9076971080 Medium
Track Conference Keynote Expedition Conference 1st International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 111
Share this record to Facebook
 

 
Author Zvonko Grzetic; Nenad Mladineo; Snjezana Knezic
Title Emergency management systems to accommodate ships in distress Type Conference Article
Year 2008 Publication Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2008
Volume Issue Pages 669-678
Keywords Artificial intelligence; Civil defense; Decision support systems; Disasters; Geographic information systems; Information systems; Risk management; Decision support system (dss); Dss; Emergency management; Emergency management systems; European Parliament; Model-based OPC; Multi Criteria Analysis; Operational research; Ships
Abstract As a future member of the European Union (EU), Croatia has decided to implement EU Directive 2002/59/EC of the European Parliament and of the Council binding all EU member states to define places of refuge for ships in need of assistance off their coasts, or to develop techniques for providing assistance to such ships. Consequently, the Ministry of the Sea, Tourism, Transport and Development of the Republic of Croatia has initiated a project for developing an effective Decision Support System (DSS) for defining the places of refuge for ships in distress at sea. Such a system would include a model based upon GIS and different operational research models, which would eventually result in establishing an integral DSS. Starting points for analysis are shipping corridors, and 380 potential locations for places of refuge designated in the official navigational pilot book. Multicriteria analysis, with GIS-generated input data, would be used to establish worthiness of a place of refuge for each ship category, taking into account kinds of accident. Tables of available intervention resources would be made, as well as analysis of their availability in respect of response time, and quantitative and qualitative sufficiency.
Address Hydrographic Institute of the Republic of Croatia, Zrinsko-Frankopanska 161, 21000 Split, Croatia; University of Split, Faculty of Civil Engineering and Architecture, Matice hrvatske 15, 21000 Split, Croatia
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Washington, DC Editor F. Fiedrich, B. Van de Walle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780615206974 Medium
Track Visualization and Smart Room Technology for Decision Making, Information Sharing, and Collaboration Expedition Conference 5th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 551
Share this record to Facebook
 

 
Author Rene Windhouwer; Gerdien A. Klunder; F.M. Sanders
Title Decision support system emergency planning, creating evacuation strategies in the event of flooding Type Conference Article
Year 2005 Publication Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2005
Volume Issue Pages 171-180
Keywords Artificial intelligence; Behavioral research; Decision support systems; Disaster prevention; Disasters; Information systems; Oil well flooding; Risk perception; Traffic control; Decision support system (dss); Decision supports; Emergency planning; Evacuation; Evacuation strategy; Extreme weather; River flooding; Traffic flow; Floods
Abstract The Decision Support System (DSS) Emergency Planning is designed for use in the event of sea or river flooding. It makes accessible all the information related to the decision whether to evacuate an area. An important factor in this decision is the time required for the evacuation. The model used by the DSS Emergency Planning system to estimate the time required employs a strategy that prevents congestion on the road network in the area at risk. The use of the DSS Emergency Planning system during the proactive and prevention phases enables disaster containment organisations to prepare better for a flood situation. Moreover, all relevant information is saved and is therefore available for the post-disaster evaluation. The DSS Emergency Planning system can play a significant role in ensuring that the evacuation of an area at risk goes according to plan. In the future the DSS Emergency Planning system can also be used to evacuate people in the event of a nuclear, natural fire or extreme weather disaster.
Address Ingenieursbureau Oranjewoud, Netherlands; TNO Inro, Netherlands
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Brussels Editor B. Van de Walle, B. Carle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9076971099 Medium
Track DECISION SUPPORT SYSTEMS Expedition Conference 2nd International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1094
Share this record to Facebook