Records |
Author |
Daniel E. Lane; Tracey L. O'Sullivan; Craig E. Kuziemsky; Fikret Berkes; Anthony Charles |
Title |
A structured equation model of collaborative community response |
Type |
Conference Article |
Year |
2013 |
Publication |
ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2013 |
Volume |
|
Issue |
|
Pages |
906-911 |
Keywords |
Computer simulation; Decision theory; Information systems; Mathematical models; Risk analysis; Adaptation; C-change; Community collaboration; Community engagement; Emergency response; EnRiCH; Preparedness; Simulation; Structured equation modeling; Emergency services |
Abstract |
This paper analyses the collaborative dynamic of community in response to urgent situations. Community emergencies arising from natural or man-induced threats are considered as exogenous events that stimulate community resources to be unified around the response, action, and recovery activities related to the emergency. A structured equation model is derived to depict the actions of the community system. The system is described in terms of its resources including the propensity to trigger community action and collaboration among diverse groups. The community is profiled with respect to its ability to respond. The system defines the trigger mechanisms that are considered to be the drivers of collaborative action. A simulation model is presented to enact the system emergencies, community profiles, and collaborative response. The results develop an improved understanding of conditions that engage community collaborative actions as illustrated by examples from community research in the EnRiCH and the C-Change community research projects. |
Address |
Telfer School of Management, University of Ottawa, Canada; Interdisciplinary Faculty of Health Sciences, University of Ottawa, Canada; Natural Resources Institute, University of Manitoba, Canada; Department of Finance and Management Science, Saint Mary's University, Canada |
Corporate Author |
|
Thesis |
|
Publisher |
Karlsruher Institut fur Technologie |
Place of Publication |
KIT; Baden-Baden |
Editor |
T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller |
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2411-3387 |
ISBN |
9783923704804 |
Medium |
|
Track |
Social Media |
Expedition |
|
Conference |
10th International ISCRAM Conference on Information Systems for Crisis Response and Management |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
677 |
Share this record to Facebook |
|
|
|
Author |
Duncan T. Wilson; Glenn I. Hawe; Graham Coates; Roger S. Crouch |
Title |
Scheduling response operations under transport network disruptions |
Type |
Conference Article |
Year |
2013 |
Publication |
ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2013 |
Volume |
|
Issue |
|
Pages |
683-687 |
Keywords |
Algorithms; Decision theory; Disasters; Emergency services; Information systems; Optimization; Stochastic systems; Disaster response; Optimization algorithms; Predictive performance; Real-time information; Road transport networks; Routing; Scheduling problem; Transport networks; Scheduling |
Abstract |
Modeling the complex decision problems faced in the coordination of disaster response as a scheduling problem to be solved using an optimization algorithm has the potential to deliver efficient and effective support to decision makers. However, much of the utility of such a model lies in its ability to accurately predict the outcome of any proposed solution. The stochastic nature of the disaster response environment can make such prediction difficult. In this paper we examine the effect of unknown disruptions to the road transport network on the utility of a disaster response scheduling model. The effects of several levels of disruption are measured empirically and the potential of using real-time information to revise model parameters, and thereby improve predictive performance, is evaluated. |
Address |
School of Engineering and Computing Sciences, Durham University, Durham DH1 3LE, United Kingdom |
Corporate Author |
|
Thesis |
|
Publisher |
Karlsruher Institut fur Technologie |
Place of Publication |
KIT; Baden-Baden |
Editor |
T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller |
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2411-3387 |
ISBN |
9783923704804 |
Medium |
|
Track |
Intelligent Systems |
Expedition |
|
Conference |
10th International ISCRAM Conference on Information Systems for Crisis Response and Management |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1093 |
Share this record to Facebook |
|
|
|
Author |
Xiaofeng Hu; Shifei Shen; Jiansong Wu |
Title |
Modeling of attacking and defending strategies in situations with intentional threats |
Type |
Conference Article |
Year |
2012 |
Publication |
ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2012 |
Volume |
|
Issue |
|
Pages |
|
Keywords |
Decision theory; Game theory; Information systems; Risk assessment; Targets; Attacking strategy; Intentional threats; Matrix game; Scientific basis; Strategic game; Strategy; Decision making |
Abstract |
Intentional threats including terrorism have become a worldwide catastrophe risk since recent years. To protect the cities from being attacked, the macro-level study of decision analysis should be given more considerations. In this paper, we proposed a model for describing the strategic game between attackers and defenders based on the methodology of matrix game. This model can be employed to determine which target will be selected by attackers and which attacking strategy and defending strategy will be chosen by attackers and defenders respectively. Furthermore, the defenders of the city can use this model to set priorities among their defending strategies. The importance of this work is to establish a reasonable framework for modeling the attacking and defending strategies rather than assessing the real risk of urban targets, so the model is illustrated by using fictitious numbers. The model proposed in this paper can provide scientific basis for macroscopic decision making in responding to intentional threats. © 2012 ISCRAM. |
Address |
Tsinghua University, China |
Corporate Author |
|
Thesis |
|
Publisher |
Simon Fraser University |
Place of Publication |
Vancouver, BC |
Editor |
L. Rothkrantz, J. Ristvej, Z.Franco |
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2411-3387 |
ISBN |
9780864913326 |
Medium |
|
Track |
Analytical Modeling and Simulation |
Expedition |
|
Conference |
9th International ISCRAM Conference on Information Systems for Crisis Response and Management |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
133 |
Share this record to Facebook |
|
|
|
Author |
Zhenyu Yu; Chuanfeng Han; Ma Ma |
Title |
Emergency decision making: A dynamic approach |
Type |
Conference Article |
Year |
2014 |
Publication |
ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2014 |
Volume |
|
Issue |
|
Pages |
240-244 |
Keywords |
Decision theory; Fires; Information systems; Markov processes; Risk management; Decision problems; Dynamic approaches; Dynamic decision making; Dynamic decision problem; Effective management; Emergency decision makings; Emergency management; Markov Decision Processes; Decision making |
Abstract |
The dynamic nature of emergency decision making exerts difficulty to decision makers for achieving effective management. In this regard, we suggest a dynamic decision making model based on Markov decision process. Our model copes with the dynamic decision problems quantitatively and computationally, and has powerful expression ability to model the emergency decision problems. We use a wildfire scenario to demonstrate the implementation of the model, as well as the solution to the firefighting problem. The advantages of our model in emergency management domain are discussed and concluded in the last. |
Address |
School of Economics and Management, Tongji University, China; Institute of Public Safety Research, Tsinghua University, China |
Corporate Author |
|
Thesis |
|
Publisher |
The Pennsylvania State University |
Place of Publication |
University Park, PA |
Editor |
S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih. |
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2411-3387 |
ISBN |
9780692211946 |
Medium |
|
Track |
Decision Support Systems |
Expedition |
|
Conference |
11th International ISCRAM Conference on Information Systems for Crisis Response and Management |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1134 |
Share this record to Facebook |