|   | 
Details
   web
Records
Author Sérgio Freire; Christoph Aubrecht; Stephanie Wegscheider
Title When the tsunami comes to town – Improving evacuation modeling by integrating high-resolution population exposure Type Conference Article
Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012
Volume Issue Pages
Keywords Floods; Information systems; Risk assessment; 3D analysis; Accurate modeling; Evacuation modeling; Horizontal and vertical displacement; Lisbon; Mitigation measures; Population exposure; Spatial modeling; Tsunamis
Abstract Tsunamis are a major risk for Lisbon (Portugal) coastal areas whose impacts can be extremely high, as confirmed by the past occurrence of major events. For correct risk assessment and awareness and for implementing mitigation measures, detailed simulation of exposure and evacuation is essential. This work uses a spatial modeling approach for estimating residential population distribution and exposure to tsunami flooding by individual building, and for simulating their evacuation travel time considering horizontal and vertical displacement. Results include finer evaluation of exposure to, and evacuation from, a potential tsunami, considering the specific inundation depth and building's height. This more detailed and accurate modeling of exposure to and evacuation from a potential tsunami can benefit risk assessment and contribute to more efficient Crisis Response and Management. © 2012 ISCRAM.
Address FCSH, Research Centre for Geography and Regional Planning, Nova University of Lisbon, Portugal; AIT Austrian Institute of Technology, Foresight and Policy Development Department, Austria; German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Germany
Corporate Author Thesis
Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780864913326 Medium
Track Geographic Information Science and Technology Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 110
Share this record to Facebook
 

 
Author Kevin D. Henry; Tim G. Frazier
Title Scenario-Based Modeling of Community Evacuation Vulnerability Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords Disaster Management; evacuation modeling; natural hazards; vulnerability assessment
Abstract Evacuation models can be used to determine evacuation capacity, by estimating the time required for evacuating populations to leave areas exposed to a hazard. Disaster management practices and evacuation modeling are generally carried out to prepare for ?worst-case? conditions. However, hazard severity is highly variable. Performing evacuation modeling for multiple hazard scenarios may provide flexibility and a comprehensive understanding of evacuation capacity. A case study was undertaken to analyze the merit of scenario-based evacuation modeling. Results demonstrate a difference in clearance time between maximum and historic tsunami scenario modeling. During a smaller-scale event, allowing the maximum scenario population to evacuate can add congestion and inhibit evacuation of at-risk populations. Managing evacuation can improve evacuation efficiency by preventing unneeded congestion. Results show that traditional worst-case-scenario modeling may lead to overestimation of time needed to evacuate. Planning under such a scenario may increase risk to smaller-scale hazards.
Address
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Planning, Foresight and Risk Analysis Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved yes
Call Number Serial 1303
Share this record to Facebook
 

 
Author Shengcheng Yuan; Ma Ma; H. Zhang; Yi Liu.
Title An urban traffic evacuation model with decision-making capability Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 317-321
Keywords Computer simulation; Decision making; Highway administration; Information systems; Roads and streets; Decision making support; Evacuation modeling; Evacuation process; Partial information; Simulation modules; System optimizations; Traffic directions; Traffic information; Emergency traffic control
Abstract Traffic evacuation is one of the most challenging problems in a mega city due to crowded road conditions. This study focuses on developing a traffic evacuation model with decision-making capability. The model basically consists of two modules. The first one is a decision-making support module which runs very fast and provides short-forecast. The second one is a simulation module, which is used for simulating real evacuation process and for overall performance evaluation with vehicle tracking model. The first module can be considered as a “local” module as only partial information, such as traffic information in certain junctions is available. The second module can be considered as a global module which provides traffic directions for junction, and effective using of road-nets. With integration of two modules, overall system optimization may be achieved. Simulation cases are given for model validation and results are satisfied.
Address Institute of Public Safety Research, Tsinghua University, Beijing, China
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Decision Support Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1136
Share this record to Facebook