|   | 
Author Justin Michael Crow
Title Verifying Baselines for Crisis Event Information Classification on Twitter Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 670-687
Keywords Event-Detection, Social-Media, Crisis-Informatics, Word-Embeddings, CNN.
Abstract Social media are rich information sources during crisis events such as earthquakes and terrorist attacks. Despite myriad challenges, with the right tools, significant insight can be gained to assist emergency responders and related applications. However, most extant approaches are incomparable, using bespoke definitions, models, datasets and even evaluation metrics. Furthermore, it's rare that code, trained models, or exhaustive parametrisation details are openly available. Thus, even confirming self-reported performance is problematic; authoritatively determining state of the art (SOTA) is essentially impossible. Consequently, to begin addressing such endemic ambiguity, this paper makes 3 contributions: 1) replication and results confirmation of a leading technique; 2) testing straightforward modifications likely to improve performance; and 3) extension to a novel complimentary type of crisis-relevant information to demonstrate it's generalisability.
Address TAG-lab, University of Sussex
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-62 ISBN 2411-3448 Medium
Track Social Media for Disaster Response and Resilie Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes jmcrow@protonmail.com Approved no
Call Number Serial 2263
Share this record to Facebook