|   | 
Details
   web
Records
Author Mike Botts; George Percivall; Carl Reed; John Davidson
Title OGC® sensor web enablement: Overview and high level architecture Type Conference Article
Year 2008 Publication Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2008
Volume Issue Pages 713-723
Keywords Architectural design; Imaging techniques; Information services; Sensor networks; Sensors; Service oriented architecture (SOA); Transducers; Web services; Geo-spatial; Ogc; Sensor web; Sensor web enablement; Soa; Information systems
Abstract A precursor paper (also available as an OGC White Paper) provides a high-level overview of and architecture for the Open Geospatial Consortium (OGC) standards activities that focus on sensors, sensor networks, and a concept called the “Sensor Web”. This OGC focus area is known as Sensor Web Enablement (SWE). For readers interested in greater technical and architecture details, please download and read the OGC SWE Architecture Discussion Paper titled “The OGC Sensor Web Enablement Architecture” (OGC document 06-021r1).
Address Univ. of Alabama in Huntsville, United States; Open Geospatial Consortium, Inc., United States; Image Matters LLC, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Washington, DC Editor F. Fiedrich, B. Van de Walle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780615206974 Medium
Track Geographic Information Science Expedition Conference 5th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 341
Share this record to Facebook
 

 
Author John M. Carroll; Helena M. Mentis; Gregorio Convertino; Mary Beth Rosson; Craig Harvey Ganoe; Hansa Sinha; Dejin Zhao
Title Prototyping collaborative geospatial emergency planning Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 105-113
Keywords Information systems; Software prototyping; Collaboration; Coordinated Multiple Views; Emergency planning; Geo-spatial information systems; Paper prototyping; Paper
Abstract Regional emergency planners use “tabletop” exercises to develop plans, to articulate strategies and constraints, and to practice working together. We conducted an experimental paper prototyping study to identify design requirements for a collaborative system to support distributed tabletop emergency planning exercises. We designed a reference task for geo-collaborative planning by adapting the hidden profile paradigm from social psychology as a model of obstacles to effective coordination in decision making. Our objective was to assess the usefulness and tractability of experimental paper prototyping methods for complex collaborative problem-solving contexts.
Address College of Information Sciences and Technology, Pennsylvania State University, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track METH Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 378
Share this record to Facebook
 

 
Author Cedric Papion
Title Water supply network resilience in the Wellington Region Type Conference Article
Year 2018 Publication Proceedings of ISCRAM Asia Pacific 2018: Innovating for Resilience – 1st International Conference on Information Systems for Crisis Response and Management Asia Pacific. Abbreviated Journal Iscram Ap 2018
Volume Issue Pages 263-271
Keywords Water supply, seismic resilience, geo-spatial optimization
Abstract Wellington sits across an active seismic fault line and depends on remote sources for its water supply. With widespread damage expected after a large earthquake, it may be months before a minimal water supply is restored to residents, and even longer before it reaches the tap. This paper presents a recent study undertaken to identify network vulnerabilities and take water supply resilience to the next level. The study presented a possible timeline for repairs to the bulk network and restoration of supply to each suburb's reservoir. This highlighted the most critical areas where an alternative supply or storage was needed. The study also considered how to get the water to the customers after the reticulation network had been damaged. The strategy considered by Wellington Water was to develop a seismically-resilient skeleton network connecting reservoirs and key distribution points. A notable innovation was the use of algorithms to determine optimal locations for public tap stands and identify the most cost-effective critical pipe network where strengthening upgrades needed to be focused. The aspects of the project concerning its significance for the region, the overall resilience strategy and the pipeline resilience engineering were presented at the Institute of Public Works Engineering Australasia (IPWEA) and Water NZ conferences in 2017. While this paper touches on these subjects, its main focus is on the use of geospatial information for earthquake preparedness and resilience planning.
Address Stantec
Corporate Author Thesis
Publisher Massey Univeristy Place of Publication Albany, Auckland, New Zealand Editor Kristin Stock; Deborah Bunker
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Track Geospatial and temporal information capture, management, and analytics in support of Disaster Decision Making Expedition Conference
Notes Approved no
Call Number Serial 1655
Share this record to Facebook
 

 
Author Timothy Clark; Rich Curran
Title Geospatial site suitability modeling for US department of defense humanitarian assistance projects Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 463-467
Keywords Analytic hierarchy process; Decision support systems; Disaster prevention; Disaster mitigation; Disaster preparedness; Geo-spatial analysis; Multicriteria decision; Suitability analysis; Information systems
Abstract The purpose of this paper is to outline the requirement for data-driven methods for determining optimal geographic locations of United States Department of Defense (DOD) Humanitarian Assistance (HA) resources, including disaster mitigation and preparedness projects. HA project managers and tactical implementers charged with cost-efficient deployment of HA resources are challenged to produce measurable effects, in addition to contributing to broader Joint and Interagency-informed security assistance strategies. To address these issues, our ongoing research advocates geospatial multi-criteria site suitability decision support capabilities that leverage 1) existing geospatial resource location-allocation methodology as applied in government, retail, and commercial sectors; 2) user-generated criteria and objective preferences applied in widely-used decision frameworks; 3) assessments of the feasibility of obtaining data at a geographic scale where DOD tactical/operational level users can benefit from the model outputs; and 4) social science theory related to the HA domain criteria that form the foundation of potential decision models.
Address Army Geospatial Center, US Army Corps of Engineers, United States; Engineer Research and Development Center, US Army Corps of Engineers, United States
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Emergency Management Information Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 401
Share this record to Facebook
 

 
Author Nuala M. Cowan
Title A geospatial data management framework for humanitarian response Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Data structures; Geographic information systems; Information systems; Framework; Geo-spatial; Humanitarian; Relief; Response; Information management
Abstract The success of humanitarian relief efforts is contingent upon the quality and timeliness of information provided to both the decision making and coordinating functions. Poor or fragmented information can lead to inappropriate decisions or poorly coordinated activities. This research focuses on how the application of spatially aware technologies can allow the information dimension of the challenge to become more effective. This will be achieved through the development of a comprehensive framework for the organization of spatially referenced humanitarian information, and corresponding geospatial data model for practical application in the field. The development of a spatial data framework that is both comprehensive and scalable can unleash the power of GIS for humanitarian data managers, and facilitate the collection and sharing of information between agencies that share similar goals. The research involves the development of a framework based on a literature review of best-practices, which will be refined and tested through interaction with the humanitarian information management community.
Address George Washington University (GWU), Institute of Crisis, Disaster and Risk Management (ICDRM), United States; George Washington University (GWU), Department of Geography, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Geographic Information Science Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 418
Share this record to Facebook
 

 
Author Shubham Gupta; Craig A. Knoblock
Title Building geospatial mashups to visualize information for crisis management Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Data integration; Decision making; Disaster prevention; Information systems; Visualization; Crisis management; Data-sources; Disaster management; Effective solution; Geo-spatial; Integrated approach; Mash-up; Mashups; Data visualization
Abstract In time-sensitive environments such as disaster management, decision-making often requires rapidly gathering the information from diverse data sources and then visualizing the collected information to understand it. Thus, it is critical to reduce the overhead in data integration and visualization for efficient decision-making. Geospatial mashups can be an effective solution in such environments by providing an integrated approach to extract, integrate and view diverse information. Currently, mashup building tools exist for creating mashups, but none of them deal with the issue of data visualization. An improper visualization of the data could result in users wasting precious time to understand the data. In this paper, we introduce a programming-by-demonstration approach to data visualization in geospatial mashups that allows the users to customize the data visualization.
Address Information Sciences Institute, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA 90292, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Geo-Information Support Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 555
Share this record to Facebook
 

 
Author Janine Hellriegel; Michael Klafft
Title A tool for the simulation of alert message propagation in the general population Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 65-69
Keywords Computer simulation; Frequency multiplying circuits; Information systems; Alert simulation; Crisis preparation; Geo-spatial informations; Message propagation; Multiplication effect; Prototypical implementation; Simulation software; Warning channel; Computer software
Abstract Informing and alerting the population in disaster situations is a challenging task. Numerous situational factors have to be considered, as well as the impact of a plethora of communication channels, and multiplication effects in the population. In order to optimize the alerting strategies and enhance alert planning, it would be beneficial to model the dissemination of alerts. In this paper, we present a general overview of an alert dissemination model as well as its prototypical implementation in a simulation software. The software takes situational parameters such as time of day and location into account and can even infer characteristics of the alerting infrastructure from geospatial information.
Address Fraunhofer FOKUS, Germany; FOM University, Fraunhofer FOKUS, Germany
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Analytic Modeling and Simulation Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 568
Share this record to Facebook
 

 
Author Suradej Intagorn; Anon Plangprasopchok; Kristina Lerman
Title Harvesting geospatial knowledge from social metadata Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Information systems; Ontology; Flickr; Geo ontologies; Geo-spatial; Geo-tagging; Social annotations; Social webs; Metadata
Abstract Up-to-date geospatial information can help crisis management community to coordinate its response. In addition to data that is created and curated by experts, there is an abundance of user-generated, user-curated data on Social Web sites such as Flickr, Delicious, and Google Earth, that can be used to harvest knowledge to solve real-world problems. User-generated, or social, metadata can be used to learn concepts and relations between them that can improve information discovery, and data integration and management. We describe a method that aggregates social metadata created by thousands of users of the social photo-sharing site Flickr to learn geospatial concepts and relations. Our method leverages geotagged data to represent and reason about places. We evaluate learned geospatial relations by comparing them to a reference ontology provided by GeoNames.org. We show that our approach achieves good performance and also learns useful information that does not appear in the reference ontology.
Address USC, Information Sciences Institute, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Geo-Information Support Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 616
Share this record to Facebook
 

 
Author Jeff Maunder
Title The Geospatial Intelligence Continuum during Sudden Onset Disaster Response Type Conference Article
Year 2018 Publication Proceedings of ISCRAM Asia Pacific 2018: Innovating for Resilience – 1st International Conference on Information Systems for Crisis Response and Management Asia Pacific. Abbreviated Journal Iscram Ap 2018
Volume Issue Pages 246-253
Keywords USAR, DART GeoInt, Geo-Spatial, Intelligence
Abstract This document will discuss the current methodologies used by New Zealand DART and USAR teams to collect manage, analyse and report on information gathered during the initial and subsequent phases of deployments to a sudden onset disaster (SOD). This will include some of the experiences that have formed the current methodology and the outcomes of disaster events with new methodologies applied. It will further identify and discuss the current systems and processes in place and how they have come about, and then identify a range of opportunities and issues that exist within the Geospatial Intelligence environment to be more effective, both in systems and the development of partnerships to enhance the usability and intuitive nature of these systems and methods. Finally, the discussion will look to identify a future state for responders to SOD's and the ability and outcomes of proposed and imagined future systems, leveraging off the current Esri packages to provide a starting platform and a desired end state.
Address Fire and Emergency New Zealand
Corporate Author Thesis
Publisher Massey Univeristy Place of Publication Albany, Auckland, New Zealand Editor Kristin Stock; Deborah Bunker
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Track Geospatial and temporal information capture, management, and analytics in support of Disaster Decision Making Expedition Conference
Notes Approved no
Call Number Serial 1656
Share this record to Facebook
 

 
Author Jobst Löffler; Vera Hernández Ernst; Jochen Schon; Jens Pottebaum; Rainer Koch
Title Intelligent use of geospatial information for emergency operation management Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 181-190
Keywords Information services; Multimedia systems; Natural resources management; Ontology; Resource allocation; Geo-spatial informations; Map service; Mobile data service; Mobile service architectures; Multi-media communications; Planning and controlling; Rescue operations; Resource management; Information management
Abstract This paper presents the EU project SHARE which aims at developing a mobile service architecture to support large-scale rescue operations with multimedia communication and information services. The task of planning and controlling large-scale rescue operations requires flexible and robust tools which help the rescue forces to do their search and rescue work with maximum efficiency. Resource planning tools and cartographic information about the operation site are essential to fulfill the complex task of operation management. The Interactive Resource Management and MAP3D are two modules which have been developed in the SHARE project to enable the rescue operation leadership to do efficient coordination of their forces during an operation. Our paper will focus on features and interdependencies of both tools taking into account innovative feedback and interaction mechanisms.
Address Fraunhofer IAIS, Sankt Augustin, Germany; University of Paderborn, Germany
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track GISC Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 722
Share this record to Facebook
 

 
Author Anthony C. Robinson; Alexander Savelyev; Scott Pezanowski; Alan M. MacEachren
Title Understanding the utility of geospatial information in social media Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 918-922
Keywords Information systems; Job analysis; Visualization; Evaluation; Geo-spatial informations; Geographic information; Geovisual analytics; Situational awareness; Social media; Visual analytics; Visual analytics systems; Information science
Abstract Crisis situations generate tens of millions of social media reports, many of which contain references to geographic features and locations. Contemporary systems are now capable of mining and visualizing these location references in social media reports, but we have yet to develop a deep understanding of what end-users will expect to do with this information when attempting to achieve situational awareness. To explore this problem, we have conducted a utility and usability analysis of SensePlace2, a geovisual analytics tool designed to explore geospatial information found in Tweets. Eight users completed a task analysis and survey study using SensePlace2. Our findings reveal user expectations and key paths for solving usability and utility issues to inform the design of future visual analytics systems that incorporate geographic information from social media.
Address Department of Geography, GeoVISTA Center, Penn State University, United States
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Social Media Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 883
Share this record to Facebook
 

 
Author Anthony C. Robinson; Robert E. Roth; Alan M. MacEachren
Title Challenges for map symbol standardization in crisis management Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Disasters; Information systems; Interoperability; Map symbols; Mapping; National security; Risk management; Security systems; Crisis management; Department of Homeland Security; Emergency management; Emergency situation; Geo-spatial informations; Home land security; Key Issues; Symbology; Standardization
Abstract A wide range of local, regional, and federal authorities will generate maps to help respond to and recover from a disaster. It is essential that map users in an emergency situation can readily understand what they are seeing on these maps. Standardizing map symbology is one mechanism for ensuring that geospatial information is interpretable during an emergency situation, but creating an effective map symbol standard is a complex and evolving task. Here we present preliminary results from research into the application of the ANSI 415-2006 INCITS Homeland Security Map Symbol Standard, a point symbol standard intended to support emergency management mapping for the U.S. Department of Homeland Security. This standard has so far not been widely adopted across the full range of DHS missions, and we elaborate on key issues and challenges that should be accounted for when developing future map symbol standards for crisis management.
Address Department of Geography, GeoVISTA Center, Pennsylvania State University, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Geo-Information Support Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 882
Share this record to Facebook
 

 
Author Robert Soden; Nama Budhathoki; Leysia Palen
Title Resilience-building and the crisis informatics agenda: Lessons learned from open cities Kathmandu Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 339-348
Keywords Information management; Information systems; Action research; Crisis informatics; Geo-spatial data; Open datum; Openstreetmap; Participatory design; Resilience; Information science
Abstract Information systems that support crisis responders and disaster risk management efforts are complex sociotechnical phenomena comprised of human capacities and relationships, data and software tools. Research in crisis informatics has highlighted the ways in which emergent groups of digital volunteers, or volunteer technical communities, have mobilized during disaster events to support information management efforts. This paper describes an action research project to support the creation of an ex ante volunteer technical community from among the potentially affected population in Kathmandu, Nepal, one of the most seismically at-risk cities in the world. In exploring this case, we argue that projects that attempt to create local open data ecosystems can be valuable but require investment in their design, execution and on-going maintenance.
Address Computer Science, Project EPIC, University of Colorado Boulder, United States; Kathmandu Living Labs, Nepal
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Humanitarian Information Systems Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 964
Share this record to Facebook
 

 
Author Brian M. Tomaszewski; Anthony C. Robinson; Chris E. Weaver; Michael Stryker; Alan M. MacEachren
Title Geovisual analytics and crisis management Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 173-179
Keywords Flow visualization; Visualization; Analytical reasoning; Complex connections; Geo-spatial informations; Geovisual analytics; Multiple data sources; Situational awareness; Support crisis management; Visual environments; Decision making
Abstract Increasing data heterogeneity, fragmentation and volume, coupled with complex connections among specialists in disaster response, mitigation, and recovery situations demand new approaches for information technology to support crisis management. Advances in visual analytics tools show promise to support time-sensitive collaboration, analytical reasoning, problem solving and decision making for crisis management. Furthermore, as all crises have geospatial components, crisis management tools need to include geospatial data representation and support for geographic contextualization of location-specific decision-making throughout the crisis. This paper provides an introduction to and description of Geovisual Analytics applied to crisis management activity. The goal of Geovisual Analytics in this context is to support situational awareness, problem solving, and decision making using highly interactive, visual environments that integrate multiple data sources that include georeferencing. We use an emergency support function example to discuss how recent progress in Geovisual Analytics can address the issues a crisis can present.
Address Department of Geography, GeoVISTA Center, Pennsylvania State University, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track VISU Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1011
Share this record to Facebook
 

 
Author Jiri Trnka; Michael Le Duc; Ake Sivertun
Title Inter-organizational issues in ICT, GIS and GSD – Mapping Swedish emergency management at the local and regional level Type Conference Article
Year 2005 Publication Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2005
Volume Issue Pages 75-82
Keywords Civil defense; Disasters; Electronic data interchange; Information systems; Risk management; Societies and institutions; Emergency management; Geo-spatial data; Ict; Interorganizational cooperation; Services; Geographic information systems
Abstract Inter-organizational issues are very challenging in emergency management (EM). In this paper, aspects of information and communication technologies (ICT), geographical information systems (GIS) and geospatial data (GSD) in the Swedish EM system, an EM system involving a large number of EM organizations, are reported based on a case study. The issues concerned include separated ICT & GIS development between organizations and formation of technological coalitions, problems of identification and access of GSD, located through the large number organizations, as well as uncoordinated launching of web-based GIS service. Possible implications of this situation for command and control are discussed. Additionally, areas for further research are suggested.
Address Department of Computer and Information Science, Linköping University, Sweden
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Brussels Editor B. Van de Walle, B. Carle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9076971099 Medium
Track COMPLEXITY and INTEROPERABILITY Expedition Conference 2nd International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1019
Share this record to Facebook