|   | 
Details
   web
Records
Author Alexandre Ahmad; Olivier Balet; Jesse Himmelstein; Arjen Boin; Maaike Schaap; Paolo Brivio; Fabio Ganovelli; Enrico Gobbetti; Giovanni Pintore; Jean-Baptiste De La Riviere
Title Interactive simulation technology for crisis management and training: The INDIGO project Type Conference Article
Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012
Volume Issue Pages
Keywords Artificial intelligence; Augmented reality; Decision support systems; Image reconstruction; Information systems; Managers; Mobile devices; Personnel training; Common operational picture; Crisis management; Crisis simulations; Image-Based Rendering; Interactive simulations; Simulation software; Visualization systems and software; White board; Computer software
Abstract To face the urgent need to train strategic and operational managers in dealing with complex crises, we are researching and developing an innovative decision support system to be used for crisis management and interactive crisis training. This paper provides an overview of current decision-support systems, simulation software and other technologies specifically designed to serve crisis managers. These findings inform the design of a new interactive simulation technology system, where a 3D Common Operational Picture (COP) is shared between tactile digital whiteboard in the command center and mobile devices in the field. © 2012 ISCRAM.
Address DIGINEXT, France; CRISIS PLAN, France; ISTI, CNR, France; CRS4, Italy; IMMERSION, France
Corporate Author Thesis
Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco
Language English Summary Language English Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780864913326 Medium
Track Open Track Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 68
Share this record to Facebook
 

 
Author T. Benjamins; Leon J.M. Rothkrantz
Title Interactive simulation in crisis management Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 571-580
Keywords Autonomous agents; Communication infrastructure; Crises situations; Crisis management; Decision making process; Event generators; Interactive simulations; Serious gaming; Training facility; Multi agent systems
Abstract Experiments in crisis management are expensive and difficult to realize. There is also a lack of training facilities in real crisis environments. Serious games and simulation can provide an alternative. We developed a system which enables interactive simulation for crisis management. It is called IMACSIM (Interactive Multi Agent Crisis Simulator Interpreter and Monitor). It is composed of the following components: First a software based platform for dynamic simulating of disasters. Next an event generator which can generate different crises situations. We designed a communication infrastructure that allows agents participants in the simulation to exchange messages. Every agent is able to observe the results of crisis events, process these events and initiate appropriate actions via a waypoint system. The decision making process is distributed among autonomous agents. Some actions may have an impact on the event generator, so there is an interaction between agents and event generator. We developed a first prototype. The design and test results will be described in this paper.
Address Man-Machine Interaction Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Netherlands
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track GAME Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 303
Share this record to Facebook
 

 
Author Robert T. Brigantic; David S. Ebert; Courtney D. Corley; Ross Maciejewski; George A. Muller; Aimee E. Taylor
Title Development of a quick look pandemic influenza modeling and visualization tool Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Decision making; Disasters; Information systems; Public health; Visualization; Community resources; Infectious disease; Interactive simulations; Mass casualty; Medical professionals; Mitigation strategy; Pandemic influenza; Visualization tools; Emergency services
Abstract Federal, State, and local decision makers and public health officials must prepare and exercise complex plans to contend with a variety of possible mass casualty events, such as pandemic influenza. Through the provision of quick look tools (QLTs) focused on mass casualty events, such planning can be done with higher accuracy and more realism through the combination of interactive simulation and visualization in these tools. If an event happens, the QLTs can then be employed to rapidly assess and execute alternative mitigation strategies, and thereby minimize casualties. This can be achieved by conducting numerous “what-if” assessments prior to any event in order to assess potential health impacts (e.g., number of sick individuals), required community resources (e.g., vaccinations and hospital beds), and optimal mitigative decision strategies (e.g., school closures) during the course of a pandemic. In this presentation, we overview and demonstrate a pandemic influenza QLT, discuss some of the modeling methods and construct and visual analytic components and interface, and outline additional development concepts. These include the incorporation of a user selectable infectious disease palette, simultaneous visualization of decision alternatives, additional resource elements associated with emergency response (e.g., first responders and medical professionals), and provisions for other potential disaster events.
Address Pacific Northwest National Laboratory, United States; Purdue University, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Safety and Security Education Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 345
Share this record to Facebook