|   | 
Details
   web
Records
Author Arif Cagdas Aydinoglu; Elif Demir; Serpil Ates
Title Designing a harmonized geo-data model for Disaster Management Type Conference Article
Year 2011 Publication (up) 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Disaster prevention; Geographic information systems; Information systems; Semantics; Standards; Data specifications; Disaster management; Dynamic data; Generic conceptual models; Geo-data; Land cover; Semantic interoperability; Disasters
Abstract There are problems for managing and sharing geo-data effectively in Turkey. The key to resolving these problems is to develop a harmonized geo-data model. General features of this model are based on ISO/TC211 standards, INSPIRE Data Specifications, and expectations of Turkey National GIS actions. The generic conceptual model components were defined to harmonize geo-data and to produce data specifications. In order to enable semantic interoperability, application schemas were designed for data themes such as administrative unit, address, cadastre/building, hydrographic, topography, geodesy, transportation, and land cover/use. The model, as base and the domain geo-data model, is a starting point to create sector models in different thematic areas. Disaster Management Geo-data Model model was developed as an extension of base geo-data model to manage geo-data collaborate on disaster management activities. This model includes existing geo-data special for disaster management activities and dynamic data collecting during disaster.
Address Istanbul Technical University, Turkey
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Interoperability and Standards Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 281
Share this record to Facebook
 

 
Author Michael Klafft; Ulrich Meissen
Title Assessing the economic value of early warning systems Type Conference Article
Year 2011 Publication (up) 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Disaster prevention; Disasters; Information systems; Privatization; Assessment models; Continuous operation; Disaster management; Early Warning System; Economic assessments; Investment decisions; Private investors; Sociocultural factors; Investments
Abstract As of today, investments into early warning systems are, to a large extent, politically motivated and “disaster-driven”. This means that investments tend to increase significantly if a disaster strikes, but are often quickly reduced in the following disaster-free years. Such investment patterns make the continuous operation, maintenance and development of the early warning infrastructure a challenging task and may lead to sub-optimal investment decisions. The paper presented here proposes an economic assessment model for the tangible economic impact of early warning systems. The model places a focus on the false alert problematic and goes beyond previous approaches by incorporating some socio-cultural factors (qualitatively estimated as of now). By doing so, it supports policymakers (but also private investors) in their investment decisions related to early warning applications.
Address Fraunhofer ISST, Germany
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Early Warning and Alert Systems Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 654
Share this record to Facebook
 

 
Author Peter Serwylo; Paul Arbon; Grace Rumantir
Title Predicting patient presentation rates at mass gatherings using machine learning Type Conference Article
Year 2011 Publication (up) 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Artificial intelligence; Data mining; Forecasting; Information systems; Event Types; Heat indices; Machine learning techniques; Mass gathering; Optimization techniques; Predictive models; Predictive variables; Time of day; Learning systems
Abstract Mass gatherings have been defined as events where more than 1,000 people are present for a defined period of time. Such an event presents specific challenges with respect to medical care. First aid is provisioned on-site at most events in order to prevent undue strain on the local emergency services. In order to allocate enough resources to deal with the expected injuries, it is important to be able to accurately predict patient volumes. This study used machine learning techniques to identify which variables are the most important in predicting patient volumes at mass gatherings. Data from 201 mass gatherings across Australia was analysed, finding that event type is the most predictive variable, followed by the state or territory, heat index, humidity, whether it is bounded, and the time of day. Variables with little bearing on the outcome included the presence of alcohol, whether the event was indoors or outdoors, and whether it had one point of focus. The best predictive models produced acceptable predictions of the patient presentations 80% of the time, and this could be further improved using optimization techniques.
Address Monash University, Australia; Flinders University, Australia
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Planning and Foresight Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 938
Share this record to Facebook
 

 
Author André Simões; Armanda Rodrigues; Patricia Pires; Luis Sá
Title Evaluating emergency scenarios using historic data: Flood management Type Conference Article
Year 2011 Publication (up) 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Artificial intelligence; Cellular automata; Computer simulation; Decision support systems; Flood control; Floods; Geographic information systems; Information systems; Risk management; Civil protection; Complex evaluations; Development process; Emergency management; Emergency scenario; Flood forecasting models; Flood management; Physical conditions; Risk perception
Abstract The evaluation of an emergency scenario is often based on the use of simulation models. The specificity of these models involves the need for a complex evaluation of the problem domain, including the physical conditions behind the considered threat. Based on emergency occurrences data, provided by the Portuguese National Civil Protection Authority, we are currently developing a methodology for evaluating a real situation, based on past occurrences. The aim is to develop a platform that will enable the evaluation of a risk scenario based on existing civil protection data. The methodology under development should enable the evaluation of different scenarios based on the collected available data. This will be achieved thanks to the facilitated configuration of several aspects, such as the geographical region and relevant properties of the considered threat. In this paper, we describe the methodology development process and the current state of the platform for risk evaluation.
Address CITI, FCT/UNL, Portugal; Autoridade Nacional de Protecção Civil, Portugal
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Geographic Information Science Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 952
Share this record to Facebook
 

 
Author Dragos Datcu; Leon J.M. Rothkrantz
Title The use of active appearance model for facial expression recognition in crisis environments Type Conference Article
Year 2007 Publication (up) Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 515-524
Keywords Face recognition; Gesture recognition; Active appearance models; Automatic evaluation; Automatic facial expression recognition; Computer vision techniques; Context-aware systems; Crisis management systems; Facial expression recognition; Human computer interfaces; Human computer interaction
Abstract In the past a crisis event was notified by local witnesses that use to make phone calls to the special services. They reported by speech according to their observation on the crisis site. The recent improvements in the area of human computer interfaces make possible the development of context-aware systems for crisis management that support people in escaping a crisis even before external help is available at site. Apart from collecting the people's reports on the crisis, these systems are assumed to automatically extract useful clues during typical human computer interaction sessions. The novelty of the current research resides in the attempt to involve computer vision techniques for performing an automatic evaluation of facial expressions during human-computer interaction sessions with a crisis management system. The current paper details an approach for an automatic facial expression recognition module that may be included in crisis-oriented applications. The algorithm uses Active Appearance Model for facial shape extraction and SVM classifier for Action Units detection and facial expression recognition.
Address Man-Machine Interaction Group, Delft University of Technology, 2628 CD, Delft, Netherlands
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track EMOT Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 425
Share this record to Facebook
 

 
Author Naci Dilekli; Tarek Rashed
Title Towards a GIS data model for improving the emergency response in the Least Developing Countries: Challenges and opportunities Type Conference Article
Year 2007 Publication (up) Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 57-62
Keywords Developing countries; Information systems; Risk management; Developed countries; Emergency management; Emergency response; Emergency response practices; Geodatabase data models; GIS data; Home land security; Potential benefits; Emergency services
Abstract Over the past few years, several standardized GIS data models have been developed to document “best practices” database designs for various application domains including the domain of emergency management. The majority of such models, however, have been developed in the context of developed countries as in the case of the Homeland Security geodatabase data model by ESRI®. These data models fail to be successful when transferred and used in the context of Least Developing Countries (LDCs) due to significant contextual differences in the domains of information systems and emergency practices. Therefore, developing GIS data models that are specifically designed for emergency response activities in LDCs are needed to improve existing emergency response practices in these countries. This paper reviews the state of development in GIS data models and the potential benefits and applications of building models that are specifically designed to support emergency response activities in LDCs. We first discusses why it is important to differentiate emergency response activities in LDCs from other contexts. We then present some theoretical considerations in developing GIS data models that can overcome contextual difficulties in LDCs in general and in the domain of information systenms. We finally attempt to provide key guidelines that may help designing a GIS Data Model, while is specifically referenced to the LDCs context.
Address University of Oklahoma, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track LDCS Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 449
Share this record to Facebook
 

 
Author Johan Jenvald; Michael Morin; Toomas Timpka; Henrik Eriksson
Title Simulation as decision support in pandemic influenza preparedness and response Type Conference Article
Year 2007 Publication (up) Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 295-304
Keywords Decision making; International cooperation; Models; Population statistics; Decision supports; Local community; Pandemic influenza; Preparedness; Response; Simulation; Workflow; Decision support systems
Abstract Outbreak of a destructive pandemic influenza threatens to disrupt societies worldwide. International agencies and national governments have prepared plans and recommendations, but it is often decision-makers with the local authorities that are responsible for implementing the response. A central issue for these decision makers is what interventions are available and effective for the specific local community. The paper presents a simulator architecture and its relation to a workflow for decision support in influenza preparedness and response. The simulator can simulate pandemic scenarios, using localized community models, in the presence of various interventions to support an evaluation of potential response strategies. The architecture includes a customized modeling tool, separated from the simulation engine, which facilitates swift scenario modification and recalculation. This flexibility is essential both to explore alternative solutions in planning, and to adapt to changing requirements, information, and resources in outbreak response. An example simulation, based on actual population data from a reference city, illustrates the approach.
Address VSL Research Labs, Linköping, Sweden; Dept. of Social Medicine and Public Health, Linköping University, Linköping, Sweden; Dept. of Computer and Information Science, Linköping University, Linköping, Sweden
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track ASCM Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 628
Share this record to Facebook
 

 
Author Mauro Falasca; Christopher W. Zobel; Gary M. Fetter
Title An optimization model for humanitarian relief volunteer management Type Conference Article
Year 2009 Publication (up) ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives Abbreviated Journal ISCRAM 2009
Volume Issue Pages
Keywords Information systems; Mathematical models; Optimization; Conflicting objectives; Humanitarian logistics; Humanitarian relief; Multi criteria decision making; Multicriteria optimization; Optimization modeling; Solution methodology; Workforce management; Decision making
Abstract One of the challenges of humanitarian organizations is that there exist limited decision technologies that fit their needs. It has also been pointed out that those organizations experience coordination difficulties with volunteers willing to help. The purpose of this paper is to help address those challenges through the development of a decision model to assist in the management of volunteers. While employee workforce management models have been the topic of extensive research over the past decades, no work has focused on the problem of managing humanitarian relief volunteers. In this paper, we discuss a series of principles from the field of volunteer management and develop a multi criteria optimization model to assist in the assignment of volunteers to tasks. We present an illustrative example and analyze a solution methodology where the decision maker exercises his/her preferences by trading-off conflicting objectives. Conclusions, limitations, and directions for future research are also discussed.
Address Dept. of Business Information Technology, Pamplin College of Business, Virginia Tech, 1007 Pamplin Hall, Blacksburg VA, 24061, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Gothenburg Editor J. Landgren, S. Jul
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789163347153 Medium
Track Humanitarian Actions and Operations Expedition Conference 6th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 482
Share this record to Facebook
 

 
Author Sébastien Truptil; Frédérick Benaben; Hervé Pingaud
Title Collaborative process design for mediation information system engineering Type Conference Article
Year 2009 Publication (up) ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives Abbreviated Journal ISCRAM 2009
Volume Issue Pages
Keywords Ontology; Systems engineering; Collaborative process; Crisis; Global approaches; Meta model; Models transformations; System of systems; Information systems
Abstract To reduce a crisis, heterogeneous actors must coordinate their actions and exchange information. The ISyCri project aims at facilitating this collaboration by providing a Mediation Information System (MIS), which change the set of partners into a system of systems. The design of this MIS is based on the characterization of the crisis and services of actors. The first step of MIS design consists in deducing a collaborative process involving partners of the crisis reduction (from the characterization of the crisis and services of actors). This step is based on a metamodel, which allows to build models (consistent with each other) and ontologies. The inference of the collaborative process is not a trivial issue: The deducing approach uses ontologies and models transformation to organize services according to characteristics of the crisis. This paper discusses this global approach and an illustrative case of study.
Address Université de Toulouse – Ecole des Mines, D'Albi-Carmaux, France
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Gothenburg Editor J. Landgren, S. Jul
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789163347153 Medium
Track Standardization and Ontologies Expedition Conference 6th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1021
Share this record to Facebook
 

 
Author Arthur H. Hendela; Murray Turoff; Starr Roxanne Hiltz
Title Cross impact security analysis using the HACKING Game Type Conference Article
Year 2010 Publication (up) ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Crime; Information systems; Models; Personnel training; Collaborative model; Cross-impact analysis; Gaming; Government organizations; Mathematical basis; Natural and man-made disasters; Planning tools; Security expenditures; Personal computing
Abstract Security of network assets is a high priority with little traditional return on investment. Increasingly, cyber attacks are being used by both terrorist and unfriendly government organizations. The HACKING Game, a Cross Impact Analysis planning tool, can be used to plan security resource allocation in computer networks. Cross Impact Analysis provides a mathematical basis to determine the interrelationships of one event with a set of other events. Output from the HACKING Game's Cross Impact Analysis model can be used to help justify security expenditures, with an added benefit of being a training tool for employees learning to protect networks. This paper presents details of the Hacking Game's design and its capabilities. Cross impact modeling can be used to develop games for any situation characterized by a set of offense and defense events to produce an individual or collaborative model for such things as natural and man-made disasters.
Address New Jersey Institute of Technology, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Planning, Foresight and/or Risk Analysis Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 569
Share this record to Facebook
 

 
Author Soumia Ichoua
Title Humanitarian logistics network design for an effective disaster response Type Conference Article
Year 2010 Publication (up) ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Disasters; Information systems; Location; Stochastic models; Stochastic systems; Transportation; Disaster response; Humanitarian logistics; Inventory; Local distributions; Pre-positioning; Scenario-based modeling; Stochastic; Strategic decisions; Emergency services
Abstract In this paper we address the problem of pre-positioning emergency supplies prior to a disaster onset. The goal is to ensure a fast and effective response when the disaster strikes. Pre-positioning of emergency supplies is a strategic decision aimed at determining the number and location of local distribution centers as well as their inventory levels for emergency supplies. These decisions must be made in a highly disruption-prone environment where a timely response is vital and resources are scarce. We present and discuss a scenario-based model that integrates location, inventory and routing decisions.
Address Department of Computer Science and Engineering, Johnson C. Smith University, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Humanitarian Challenges Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 610
Share this record to Facebook
 

 
Author Syed Imran; Franclin Foping; Ioannis M. Dokas; John Feehan
Title Towards domain specific modeling approach in early warning system Type Conference Article
Year 2010 Publication (up) ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Accident prevention; Information systems; Open source software; Software engineering; Water supply; Water treatment plants; Domain specific modeling; DSM approaches; Early warning; Early Warning System; Early warning systems; Governance models; Knowledge model; Monitoring mechanisms; Alarm systems
Abstract It is of practical significance and great value to design and develop a novel Early Warning System (EWS), which will be used by the personnel of institutions involved in the drinking water delivery governance model of Ireland. In order to help the users of our EWS in representing and codifying their knowledge on the complex coincidences that may drive Water Treatment Plants (WTP) to failures or to hazardous states we propose in this paper a novel approach of using Domain Specific Modeling (DSM) in the domain of EWS for Water Treatment Plants. The novelty of our DSM approach also lies in providing a standalone open source software application rendering profiling of the water utilities, early warning signals, monitoring mechanisms of signals along with capability of assessing the “tendency” of a WTP towards failure, given a set of observed early warning signals.
Address University College, Cork, Ireland
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Poster Session Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 614
Share this record to Facebook
 

 
Author Jennifer Mathieu; Mark Pfaff; Gary L. Klein; Jill L. Drury; Michael Geodecke; John James; Paula Mahoney; Georgiy Bobashev
Title Tactical robust decision-making methodology: Effect of disease spread model fidelity on option awareness Type Conference Article
Year 2010 Publication (up) ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Computer simulation; Information systems; Agent-based model; Computational time; Courses of action; Equation models; Information technology systems; Integration requirements; Model and simulation; Operational environments; Decision making
Abstract We demonstrate a method of validating the utility of simpler, more agile models for supporting tactical robust decision making. The key is a focus on the decision space rather than the situation space in decision making under deep uncertainty. Whereas the situation space is characterized by facts about the operational environment, the decision space is characterized by a comparison of the options for action. To visualize the range of options available, we can use computer models to generate the distribution of plausible consequences for each decision option. If we can avoid needless detail in these models, we can save computational time and enable more tactical decision-making, which will in turn contribute to more efficient Information Technology systems. We show how simpler low fidelity, low precision models can be proved to be sufficient to support the decision maker. This is a pioneering application of exploratory modeling to address the human-computer integration requirements of tactical robust decision making.
Address MITRE Corporation, United States; Indiana University, Indianapolis, United States; RTI International, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Planning, Foresight and/or Risk Analysis Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 747
Share this record to Facebook
 

 
Author Babajide Osatuyi; David Mendonça
Title Requirements for modeling collaborative information foraging behavior: An application to emergency response organizations Type Conference Article
Year 2010 Publication (up) ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Dynamics; Hardware; Models; Collaborative information; Dynamic process; Emergency response; Extreme environment; Foraging behaviors; Information foraging; Model approach; Model method; Information systems
Abstract Collaborative information foraging refers to the collective activities of seeking and handling information in order to meet information needs. This paper delineates requirements for modeling salient factors that shape collaborative information foraging behavior of groups. Existing modeling approaches are assessed based on their adequacy for measuring identified salient factors that shape collaborative information foraging behavior. A view of information foraging behavior as a dynamic process is presented. Consequently, this paper purports that modeling methods employed to aid understanding of foraging behavior must allow for plausible explanation of the inherent dynamism in foraging activities. This work therefore provides an initial roadmap to defining salient factors that need to be addressed in order to adequately model collaborative information foraging behavior within teams that operate in extreme environments. Implications of this work in practice and research are discussed.
Address New Jersey Institute of Technology, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Research Methods Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 818
Share this record to Facebook
 

 
Author Huizhang Shen; Jidi Zhao
Title Decision-making support based on the combination of CBR and logic reasoning Type Conference Article
Year 2010 Publication (up) ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Artificial intelligence; Decision support systems; Casebased reasonings (CBR); Crisis; Decision making support; Decision modeling; Decision models; Decision process; Emergency response; Logic reasoning; Information systems
Abstract In recent years, various crises arise frequently and cause tremendous economic and life losses. Meanwhile, current emergency decision models and decision support systems still need further improvement. This paper first proposes a new emergency decision model based on the combination of a new case retrieval algorithm for Case-Based Reasoning (CBR) and logic reasoning, and then address a sample flood disaster emergency decision process to explain the application of the model in practice.
Address Department of Management Information Systems, Shanghai Jiao Tong University, China
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Intelligent Systems Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 945
Share this record to Facebook
 

 
Author Telmo Zarraonandia; Mario Rafael Ruíz Vargas; Paloma Díaz; Ignacio Aedo
Title A game model for supporting children learning about emergency situations Type Conference Article
Year 2010 Publication (up) ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Information systems; Learning systems; Models; Personnel training; Software design; Communication tools; Educational experiences; Educational process; Educational resource; Emergency; Emergency situation; Emergency training; Games; Education
Abstract Despite the undeniable value of computer games as educational resources for teaching children, its actual application in educational processes is hampered due the complexity of their design and the high cost of developing them. In order to foster their adoption for emergency training, we propose a model for describing the different elements of an educational game for this domain. The model might serve to support the game designing process as well as a communication tool between educators and game designers. This way, the educator can specify the requirements of the educational experience he aims to construct, and based on that information the game designer can propose a set of possible configurations of the game elements that can help to attain the specified objectives.
Address Computer Science Department, Universidad Carlos III, Madrid, Spain
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Safety and Security Education Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1138
Share this record to Facebook
 

 
Author Jean-François Gagnon; Martin Rivest; François Couderc; Sébastien Tremblay
Title Capturing the task model of experts in emergency response using SYnRGY Type Conference Article
Year 2012 Publication (up) ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012
Volume Issue Pages
Keywords Information systems; Risk management; Emergency management; Emergency response; Inherent complexity; Innovative models; Measurement and simulation; Realistic environments; Team measurement; Technological tools; Emergency services
Abstract The need for better team measurement in realistic environments has been recognized as one of the key challenges that characterize the field of team work studies (Salas, Cooke, & Rosen, 2008). This challenge is particularly hard to address in the context of emergency response, due to the inherent complexity and dynamism of the domain. Emergency response is part of the emergency management cycle, and refers to the mobilization of the adequate actors and resources to mitigate the impact of an incident on the public and on the environment (Abrahamsson, Hassel, and Tehler, 2010). Emergency response often requires the cooperation of multiple agencies such as police, medical, and fire services, consequently increasing the complexity of such operations. We report of how SYnRGY – a human-centered emergency response technological tool – is embedded with extensive measurement and simulation capabilities to allow tracing of experts' task models in a silent and reliable way. We describe how these capabilities; combined with an innovative modeling technique – dynamic cognitive task modeling – can be used to extract experts' representations of the task. We discuss the importance of such a model for training, improvement of emergency response procedures and development of emergency response tools. © 2012 ISCRAM.
Address Université Laval, Canada; Thales Canada Inc., Canada
Corporate Author Thesis
Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780864913326 Medium
Track Poster Session Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 115
Share this record to Facebook
 

 
Author Sigmund Kluckner; Johannes Sautter; Matthias Max; Wolf Engelbach; Tina Weber
Title Impacting factors on human reactionsto alerts Type Conference Article
Year 2012 Publication (up) ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012
Volume Issue Pages
Keywords Knowledge based systems; Models; Social sciences; Alert; Crisis situations; Human behaviors; Human reaction; Literature reviews; Modeling and simulating; Support crisis management; Warning; Behavioral research
Abstract Crisis response authorities have to deal with the unpredictability of their population's behavior. One of the complex challenges is to understand the people's reaction after an official alert in a crisis situation has been issued. This paper elaborates a knowledge base to describe impacting factors on human reactions in alerting situations. For this purpose, a literature review in the theme of human behavior after warnings was conducted and augmented with information gathered in a series of interviews in German-speaking countries. The outcome is phrased as factors that might impact the human reaction to a warning. This knowledge base shall support crisis management practitioners in the elaboration of alerting strategies as well as allow researchers to systematically structure human behavior aspects for the purpose of modeling and simulating alert effects. © 2012 ISCRAM.
Address University of Stuttgart, Germany; German Red Cross, Germany
Corporate Author Thesis
Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780864913326 Medium
Track Special Session Mixed Methods Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 142
Share this record to Facebook
 

 
Author Felix Wex; Guido Schryen; Dirk Neumann
Title Operational emergency response under informational uncertainty: A fuzzy optimization model for scheduling and allocating rescue units Type Conference Article
Year 2012 Publication (up) ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012
Volume Issue Pages
Keywords Artificial intelligence; Decision support systems; Fuzzy set theory; Information systems; Monte Carlo methods; Optimization; Computational evaluation; Coordination; Decision support models; Fuzzy optimization model; Heuristic solutions; Informational uncertainty; Linguistic assessment; Operational emergency; Scheduling
Abstract Coordination deficiencies have been identified after the March 2011 earthquakes in Japan in terms of scheduling and allocation of resources, with time pressure, resource shortages, and especially informational uncertainty being main challenges. We suggest a decision support model that accounts for these challenges by drawing on fuzzy set theory and fuzzy optimization. Based on requirements from practice and the findings of our literature review, the decision model considers the following premises: incidents and rescue units are spatially distributed, rescue units possess specific capabilities, processing is non-preemptive, and informational uncertainty through linguistic assessments is predominant when on-site units vaguely report about incidents and their attributes, or system reports are not exact. We also suggest a Monte Carlo-based heuristic solution procedure and conduct a computational evaluation of different scenarios. We benchmark the results of our heuristic with results yielded through applying a greedy approach. The results indicate that using our Monte Carlo simulation to solve the decision support model inspired by fuzzy set theory can substantially reduce the overall harm. © 2012 ISCRAM.
Address Albert-Ludwigs-Universität Freiburg, Germany; Universität Regensburg, Germany
Corporate Author Thesis
Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780864913326 Medium
Track Intelligent Systems Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 238
Share this record to Facebook
 

 
Author Philip Degener; Henning Gösling; Jutta Geldermann.
Title Decision support for the location planning in disaster areas using multi-criteria methods Type Conference Article
Year 2013 Publication (up) ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 278-283
Keywords Decision support systems; Disasters; Facilities; Information systems; Location; Societies and institutions; Decision supports; Emergency relief; Facility location models; Facility locations; Multi-criteria method; Personnel resources; Pre-positioning; Warehouse location; Emergency services
Abstract In this paper, a multi-criteria facility location model is represented. The model is meant to support relief organisations to determine the best warehouse location to stock emergency relief supplies in the pre-disaster phase of a natural disaster. As a result of the prepositioning of the goods the relief organisations are able to respond immediately to an occurring disaster. In consideration of a multiplicity of quantitative and qualitative objectives a criteria hierarchy is developed which can be adapted to any specific disaster area by omitting irrelevant goals. Afterwards the multi-criteria methods PROMETHEE I+II as well as different sensitivity analysis are described and the model is applied on a local level in a flood-prone area in Bangladesh. Small organisations with restrictive financial and personnel resources can especially benefit from the clear structure of the model and the user friendliness and high transparency of the PROMETHE I+II methods.
Address Dept. of Organization and Corporate Development, University of Göttingen, Germany; Dept. of Production and Logistics, University of Göttingen, Germany
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Decision Support Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 439
Share this record to Facebook
 

 
Author Franclin Foping; Ioannis M. Dokas
Title A saas-based early warning information fusion system for critical infrastructure safety Type Conference Article
Year 2013 Publication (up) ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 156-165
Keywords Critical infrastructures; Information fusion; Information systems; Public works; Software as a service (SaaS); Web services; Communications systems; Complex problems; Deployment models; Early Warning System; Prototype system; Republic of Ireland; Saas; Safety management systems; Information management
Abstract Maintaining the critical infrastructures, such as Drinking Water Treatment Plants (DWTP), transportation, power generation and communications systems, in a safe state is a complex problem. The effective collaboration, as well as the collection aggregation and dissemination of early warning information among the stakeholders of the Safety Management System (SMS) responsible for the safety of these critical infrastructures are some of the challenges that need to be addressed. This paper argues that the Software as a Service (SaaS) deployment model can offer new ways of enhancing the fusion of early warning information during the operation phase of critical infrastructures. It presents the requirements, the architecture and a number of features of a working prototype SaaS-based early warning information fusion system for DWTP safety issues in the Republic of Ireland. It is the first time that a SaaSbased working prototype system is reported of providing early warning information fusion services in the literature.
Address Cork Constraint Computation Centre, UCC, Cork, Ireland
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Critical Infrastructures Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 501
Share this record to Facebook
 

 
Author Erkki Kurkinen
Title The effect of age on technology acceptance among field police officers Type Conference Article
Year 2013 Publication (up) ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 468-477
Keywords Information systems; Behavioral intention; Mobile information systems; Non-volitional use; Perceived usefulness; Police officers; Research models; Technology acceptance; User intention; Law enforcement
Abstract This paper studies the differences on technology acceptance between two age groups among uniform police forces. The goal was to seek more understanding on the effects of age on technology adaption in the context of mandatory technology use. Data was collected from police officers in field operations. User intentions were measured after subjects had seen a presentation of a pre-prototype of a mobile information system on the video. The results of this study suggest that there is no difference between the old and young age groups. Similarly, the results suggest that the effect of age is similar between the age groups on the effects of the factors in the research model. This suggests that the old police officers are similar to young police officers regarding the acceptance of new technology for their use. The most prominent result was that regression of behavioral intention on perceived usefulness was not statistically important.
Address University of Jyvaskyla, Finland
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Emergency Management Information Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 664
Share this record to Facebook
 

 
Author Daniel E. Lane; Tracey L. O'Sullivan; Craig E. Kuziemsky; Fikret Berkes; Anthony Charles
Title A structured equation model of collaborative community response Type Conference Article
Year 2013 Publication (up) ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 906-911
Keywords Computer simulation; Decision theory; Information systems; Mathematical models; Risk analysis; Adaptation; C-change; Community collaboration; Community engagement; Emergency response; EnRiCH; Preparedness; Simulation; Structured equation modeling; Emergency services
Abstract This paper analyses the collaborative dynamic of community in response to urgent situations. Community emergencies arising from natural or man-induced threats are considered as exogenous events that stimulate community resources to be unified around the response, action, and recovery activities related to the emergency. A structured equation model is derived to depict the actions of the community system. The system is described in terms of its resources including the propensity to trigger community action and collaboration among diverse groups. The community is profiled with respect to its ability to respond. The system defines the trigger mechanisms that are considered to be the drivers of collaborative action. A simulation model is presented to enact the system emergencies, community profiles, and collaborative response. The results develop an improved understanding of conditions that engage community collaborative actions as illustrated by examples from community research in the EnRiCH and the C-Change community research projects.
Address Telfer School of Management, University of Ottawa, Canada; Interdisciplinary Faculty of Health Sciences, University of Ottawa, Canada; Natural Resources Institute, University of Manitoba, Canada; Department of Finance and Management Science, Saint Mary's University, Canada
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Social Media Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 677
Share this record to Facebook
 

 
Author Beate Rottkemper; Kathrin Fischer
Title Decision making in humanitarian logistics – A multi-objective optimization model for relocating relief goods during disaster recovery operations Type Conference Article
Year 2013 Publication (up) ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 647-657
Keywords Budget control; Decision making; Disasters; Information systems; Mathematical models; Multiobjective optimization; Recovery; Constraint methods; Decision making support; Disaster situations; Humanitarian logistics; Humanitarian operations; Multi objective decision making; Multi-objective optimization models; Scenario Planning; Emergency services
Abstract Disaster recovery operations rarely proceed smoothly and disruptions often require the redistribution of relief items. Such a redistribution has to be carried out taking into account both the current disruption and the uncertainty regarding possible future incidents in the respective area. As decisions have to be made fast in humanitarian operations, extensive optimization runs cannot be conducted in such a situation. Nevertheless, sensible decisions should be made to ensure an efficient redistribution, considering not only satisfaction of needs but also operational costs, as the budget is usually scarce in the recovery phase of a disaster. In this work, different scenarios are generated and then solved with a multiobjective optimization model to explore possible developments. By evaluating the results of these scenarios, decision rules are identified which can support the decision maker in the actual disaster situation in making fast, but nevertheless well-founded, decisions.
Address Institute for or and is Hamburg, University of Technology, Germany
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Analytical Modelling and Simulation Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 895
Share this record to Facebook
 

 
Author Christoph Aubrecht; Klaus Steinnocher; Hermann Huber
Title DynaPop – Population distribution dynamics as basis for social impact evaluation in crisis management Type Conference Article
Year 2014 Publication (up) ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 314-318
Keywords Information systems; Population distribution; Population dynamics; Risk assessment; Activity patterns; Crisis management; Evacuation planning; Population distribution patterns; Population dynamics models; Population exposure; Spatial disaggregation; Spatio-temporal models; Economic and social effects
Abstract In this paper ongoing developments regarding the conceptual setup and subsequent implementation logic of a seamless spatio-temporal population dynamics model are presented. The DynaPop model aims at serving as basic input for social impact evaluation in crisis management. In addition to providing the starting point for assessing population exposure dynamics, i.e. the location and number of affected people at different stages during an event, knowledge of spatio-temporal population distribution patterns is also considered crucial for a set of other related aspects in disaster risk and crisis management including evacuation planning and casualty assessment. DynaPop is implemented via a gridded spatial disaggregation approach and integrates previous efforts on spatio-temporal modeling that account for various aspects of population dynamics such as human mobility and activity patterns that are particularly relevant in picturing the highly dynamic daytime situation.
Address AIT Austrian Institute of Technology, Energy Department, Austria; AIT Austrian Institute of Technology, Safety and Security Department, Austria
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Geographic Information Science Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 279
Share this record to Facebook