|   | 
Details
   web
Records
Author Imane Benkhelifa; Samira Moussaoui; Nadia Nouali-Taboudjemat
Title Locating emergency responders using mobile wireless sensor networks Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 432-441
Keywords Carrier mobility; Disaster prevention; Disasters; Forecasting; Global positioning system; Information systems; Mobile agents; Monte Carlo methods; Speed; Wireless sensor networks; Direction; Disaster management; Emergency response; Localization; Mobile anchors; Mobile wireless sensor network; Emergency services
Abstract Emergency response in disaster management using wireless sensor networks has recently become an interest of many researchers in the world. This interest comes from the growing number of disasters and crisis (natural or man-made) affecting millions of lives and the easy-use of new and cheap technologies. This paper details another application of WSN in the post disaster scenario and comes up with an algorithm for localization of sensors attached to mobile responders (firefighters, policemen, first aid agents, emergency nurses, etc) while assisted by a mobile vehicle (fire truck, police car, or aerial vehicle like helicopters) called mobile anchor, sent to supervise the rescue operation. This solution is very efficient and rapidly deployable since no pre-installed infrastructure is needed. Also, there is no need to equip each sensor with a GPS receiver which is very costly and may increase the sensor volume. The proposed technique is based on the prediction of the rescuers velocities and directions considering previous position estimations. The evaluation of our solution shows that our technique takes benefit from prediction in a more effective manner than previous solutions. The simulation results show that our algorithm outperforms conventional Monte Carlo localization schemes by decreasing estimation errors with more than 50%.
Address USTHB- Department of Informatics, Algiers, Algeria; CERIST Research Center, Algiers, Algeria
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Emergency Management Information Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 304
Share this record to Facebook
 

 
Author Thomas Bernoulli; Gerald Glanzer; Thomas Wiebflecker; Ulrich Walder
Title Infrastructurless indoor positioning system for first responders Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Disaster prevention; Disasters; Information systems; Risk management; Underground structures; Units of measurement; Disaster management; Emergency management; Global Navigation Satellite Systems; Indoor positioning; Indoor positioning systems; Inertial measurement unit; Inertial navigations; Position estimates; Human resource management
Abstract To overview the site of operation in case of an emergency is crucial for effective emergency management. This is a difficult task, in particular within large buildings or underground structures. Information about the whereabouts of the staff is a key element of effective disaster management. This paper presents an indoor positioning system which is able to track and locate people within buildings independent of any infrastructure (global navigation satellite system, WLAN installations, etc.). The system is based on inertial measurement units computing the track of its wearer and a component verifying this position estimates using floor plans of the building. This novel approach allows robust tracking and locating of action forces within buildings and underground structures.
Address Graz University of Technology, Austria
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Geo-Information Support Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 314
Share this record to Facebook
 

 
Author Philip Degener; Henning Gösling; Jutta Geldermann.
Title Decision support for the location planning in disaster areas using multi-criteria methods Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 278-283
Keywords Decision support systems; Disasters; Facilities; Information systems; Location; Societies and institutions; Decision supports; Emergency relief; Facility location models; Facility locations; Multi-criteria method; Personnel resources; Pre-positioning; Warehouse location; Emergency services
Abstract In this paper, a multi-criteria facility location model is represented. The model is meant to support relief organisations to determine the best warehouse location to stock emergency relief supplies in the pre-disaster phase of a natural disaster. As a result of the prepositioning of the goods the relief organisations are able to respond immediately to an occurring disaster. In consideration of a multiplicity of quantitative and qualitative objectives a criteria hierarchy is developed which can be adapted to any specific disaster area by omitting irrelevant goals. Afterwards the multi-criteria methods PROMETHEE I+II as well as different sensitivity analysis are described and the model is applied on a local level in a flood-prone area in Bangladesh. Small organisations with restrictive financial and personnel resources can especially benefit from the clear structure of the model and the user friendliness and high transparency of the PROMETHE I+II methods.
Address Dept. of Organization and Corporate Development, University of Göttingen, Germany; Dept. of Production and Logistics, University of Göttingen, Germany
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Decision Support Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 439
Share this record to Facebook
 

 
Author Rego Granlund; Helena Granlund
Title GPS impact on performance, response time and communication – A review of three studies Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Artificial intelligence; Decision making; Decision support systems; Global positioning system; Information systems; Tracking (position); Command posts; Controlled experiment; Crisis management; Decision makers; Decision supports; Service personnel; University students; Work performance; Human resource management
Abstract This paper describes the basic work performance analysis from three research projects with a goal to investigate the impact of a decision support system that presents global positioning system (GPS) information to the decision makers in crisis management organizations. The goal was to compare the performance between teams that had access to GPS information in the command post with teams that had access only to paper maps. The method used was controlled experiments with the C3Fire micro-world. A total of 304 participants, forming 48 teams, participated in the three studies. The participants came from three different groups, university students, municipal crisis management organizations and rescue service personnel. The result shows that the performance and communication change depending on if the teams used GPS support or paper maps. The result also shows that the participants' background and perceived complexity of the task have an impact on the results.
Address Santa Anna IT Research Institute, Swedish Defence Research Agency, Linköping, Sweden
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Advanced Research Methods and Unconventional Results Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 543
Share this record to Facebook
 

 
Author Charlotte Hellgren; Björn J.E. Johansson
Title Reducing workload by navigational support in dynamic situations Type Conference Article
Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012
Volume Issue Pages
Keywords Helmet mounted displays; Information systems; Navigation; Attention; Dynamic environments; GPS-receivers; Head mounted displays; Minimal information; Workload; Global positioning system
Abstract By presenting continuously updated heading and distance information on a small head-mounted display (HMD), as a supplement to a GPS-receiver, we examined if workload could be reduced and performance increased, when navigating in a demanding situation. The purpose was to present limited but sufficient information to facilitate navigation. The technique was tested on ground troops, but could also be used by rescue services and police in situations that require navigation in unknown environments. The main findings were that the workload was reduced in one aspect (during navigation) but increased in another (looking for foot placement). There were no clear differences in performance, except that participants stopped fewer times to look at the GPS-receiver if they had updated heading and distance information. This suggests that a supplement display with minimal information could be useful when navigating with a GPS-receiver in an unknown environment. © 2012 ISCRAM.
Address Swedish Defence Research Agency, Sweden
Corporate Author Thesis
Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780864913326 Medium
Track Geographic Information Science and Technology Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 127
Share this record to Facebook
 

 
Author Soumia Ichoua
Title Humanitarian logistics network design for an effective disaster response Type Conference Article
Year 2010 Publication ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings Abbreviated Journal ISCRAM 2010
Volume Issue Pages
Keywords Disasters; Information systems; Location; Stochastic models; Stochastic systems; Transportation; Disaster response; Humanitarian logistics; Inventory; Local distributions; Pre-positioning; Scenario-based modeling; Stochastic; Strategic decisions; Emergency services
Abstract In this paper we address the problem of pre-positioning emergency supplies prior to a disaster onset. The goal is to ensure a fast and effective response when the disaster strikes. Pre-positioning of emergency supplies is a strategic decision aimed at determining the number and location of local distribution centers as well as their inventory levels for emergency supplies. These decisions must be made in a highly disruption-prone environment where a timely response is vital and resources are scarce. We present and discuss a scenario-based model that integrates location, inventory and routing decisions.
Address Department of Computer Science and Engineering, Johnson C. Smith University, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Seattle, WA Editor S. French, B. Tomaszewski, C. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Humanitarian Challenges Expedition Conference 7th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 610
Share this record to Facebook
 

 
Author Björn J.E. Johansson; Charlotte Hellgren; Per-Anders Oskarsson; Jonathan Svensson
Title Supporting situation awareness on the move – The role of technology for spatial orientation in the field Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 442-451
Keywords Global positioning system; Information systems; Electronic compass; Perspective taking; Positioning; Sense of directions; Situation awareness; Spatial awareness; Landforms
Abstract The study presented in this paper has investigated how technology can support spatial awareness when moving in wooded terrain. By “spatial awareness”, we refer to the ability to point in the approximate direction of several objects while navigating in unknown terrain. The ability to localize objects in the terrain has importance for emergency operations, for example firefighting and search and rescue operations. A field experiment was conducted with two conditions, one with technical support and one without. The results show that technical support in terms of GPS, digital maps and electronic compass can dramatically improve the ability to accurately indicate directions to objects. Further, findings concerning use of tests on spatial orientation to predict the ability to indicate directions to objects in the terrain when having no technical support are presented.
Address Swedish Defence Research Agency, Sweden
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Emergency Management Information Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 638
Share this record to Facebook
 

 
Author Mehdi Ben Lazreg; Jaziar Radianti; Ole-Christoffer Granmo
Title SmartRescue: Architecture for Fire Crisis Assessment and Prediction Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords Bayesian Network; Fire Prediction; Indoor Positioning; Smartphone App
Abstract In case of indoor fire hazards, firefighters face difficulties at assessing the fire situation and evacuating trapped victim inside the building, especially when the fire is big, and the building is unknown to them. On the other hand, modern sensor technologies in smartphone are becoming more advanced, widespread, and can be exploited for helping the firefighting operation. This paper proposes using smartphones as a distributed sensing and computing platform, for supporting firefighters to conduct their mission. The developed solution is based on collecting sensor data from smartphones. A Bayesian network then uses this data to generate a picture of the fire and predict its development. The additional indoor positioning feature make this proposed solution a promising tool to make the firefighter intervention more efficient and fast in order to save more lives.
Address
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Decision Support Systems Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved yes
Call Number Serial 1295
Share this record to Facebook
 

 
Author Tolt, G.; Rydell, J.; Bilock, E.; Eek, J.; Andersson, P.; Nygårds, J.
Title Real-time Multi-Sensor Positioning for First Responders Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 177-187
Keywords Positioning; Real-Time; Multi-Sensor; Sensor Fusion; First Responders
Abstract This paper describes a concept for real-time positioning of first responders that includes a number of complementary sensors worn by the first responder, to increase accuracy and robustness in indoor and complex environments. By using sensors of different types, each with their own strengths and limitations, and fusing their respective outputs, the goal is to increase the usability of positioning information in time-critical and risky operations. This facilitates synchronization of activities and increases safety in the operation. The sensors included in the proposed real-time positioning module are shoe-mounted inertial measurement units, ultra-wideband radio, thermal and visual cameras, and GNSS. The fusion framework is based on factor graphs. This work-in-progress paper describes the individual sensor components and shows preliminary findings concerning the possibilities to improve position estimation through sensor fusion.
Address Swedish Defence Research Agency
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/QGAD8737 Approved no
Call Number ISCRAM @ idladmin @ Serial 2516
Share this record to Facebook
 

 
Author Tolt, G.; Rydell, J.; Tulldahl, M.; Holmberg, M.; Karlsson, O.; Bissmarck, F.
Title The MAX Drone for Autonomous Indoor Exploration Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 220-230
Keywords UAV; Exploration; Navigation; Positioning; Autonomy
Abstract This paper presents the concept and prototype implementation of a drone for Multi-purpose Autonomous eXploration of indoor environments – MAX. The purpose of MAX is to support first responders in the difficult task of assessing unknown and potentially dangerous or hostile situations in indoor or underground environments. The approach for addressing challenges associated with this task has been to construct a custom-designed drone based on requirements and conditions of first responder missions. This paper reports on the first phase of development of the MAX drone, aimed for experimentation with autonomy functionality in first responder contexts and for enabling further development of advanced higher-level planning functions. It describes the overall design of the MAX drone, its capabilities in terms of robust positioning and autonomous mission execution, along with the status of key enabling algorithms for exploration, such as target point selection and path planning.
Address
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/LYTB7325 Approved no
Call Number ISCRAM @ idladmin @ Serial 2520
Share this record to Facebook
 

 
Author Remko Van Der Togt; Euro Beinat; Henk J. Scholten
Title Location-based emergency medicine: Medical Location Services for emergency management: Information and coordination of rescue resources Type Conference Article
Year 2004 Publication Proceedings of ISCRAM 2004 – 1st International Workshop on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2004
Volume Issue Pages 45-50
Keywords Accidents; Disaster prevention; Disasters; Geographic information systems; Global positioning system; Health care; Information services; Information systems; Law enforcement; Location; Location based services; Radio; Risk management; Risks; Data quality; Emergency medicine; Handhelds; Mobile; Resource planning; Spatial informations; Triage; Information management
Abstract Crisis and disaster management in the Netherlands has made huge leaps forward in recent years with regard to different organisations trying to manage one or more aspects of the safety chain. This research focuses on the information structure of health care during disasters with an aim to improve disaster management and tries to answer the following question: How can location based services improve information services within health care during disasters? Through the use of literature and interviews this thesis describes how disaster management can be improved through the use of Location Based Services (LBS). The scope of this research is aimed at better understanding the organisational processes during somatic health care. By defining a case and on the basis of literature and interviews in the Province of Utrecht, it was possible to develop a three layer graph model (3LGM). This model shows an overview of information processes performed by the health care organisation during the first hour after an accident. In this context, the 3LGM model is used to obtain an overview of the quality of information processing in such a problem area. The organisational structure, which deals with disaster management, consists of a strong co-operation between the police, fire departments, the local government and the 'Medical Aid during Accidents and Disasters' (GHOR). The size of the organisation depends largely upon the scale of the disaster, however the current information structure is not suitable for storing and processing the information in an efficient and effective manner. The same applies when displaying information related to casualties and safety within an area. With the help of location based services consisting of, geographical information systems (GIS), global positioning systems (GPS) and second or third generation telecommunication technologies, the existing information structure can be optimised. Expected advantages are higher accessibility to health care, a safer environment for rescuers, more time for managing the healthcare processes and an improved interdisciplinary co-operation between the police, fire departments, the local government and the GHOR. © Proceedings ISCRAM 2004.
Address Spatial Information Laboratory, Institute for Environmental Studies, Free University, De Boelelaan 1087, Amsterdam, Netherlands
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Brussels Editor B. Van de Walle, B. Carle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9076971080 Medium
Track POSTER SESSION Expedition Conference 1st International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 230
Share this record to Facebook
 

 
Author Ulrich Walder; Thomas Bernoulli; Thomas Wießflecker
Title An indoor positioning system for improved action force command and disaster management Type Conference Article
Year 2009 Publication ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives Abbreviated Journal ISCRAM 2009
Volume Issue Pages
Keywords Disaster prevention; Information systems; Mobile ad hoc networks; Mobile radio systems; Semantics; Sensor networks; Telecommunication networks; Underground structures; User interfaces; Building modelling; Cafm; Disaster management; Head mounted displays; Indoor positioning; Indoor positioning systems; Professional mobile radio systems; Robust indoor positioning; Disasters
Abstract Managing emergency situations in large buildings and underground structures could be simplified if at any time the positions of on-site emergency crews were available. In this paper a system is proposed which combines inertial measurements of moving persons with building floor plans tagged with information on semantics to achieve a novel level of robust indoor positioning. A speech driven user interface tailored for visualization on head mounted displays makes information easily available for action forces. The system is complemented with a self-configurating communication network based on novel approaches combining mobile ad hoc networks, sensor networks, and professional mobile radio systems to make the locally determined positions available to anybody on-site.
Address Graz University of Technology, Austria
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Gothenburg Editor J. Landgren, S. Jul
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789163347153 Medium
Track Human-Computer Interaction Expedition Conference 6th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1057
Share this record to Facebook