|   | 
Details
   web
Records
Author Kui Wang; Jose Marti; Ming Bai; K.D. Srivastava
Title Optimal decision maker algorithm for disaster response management with I2Sim applications Type Conference Article
Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012
Volume Issue Pages
Keywords Algorithms; Computer software; Disasters; Emergency services; Information systems; Lagrange multipliers; Optimization; Human-readable; I2Sim toolbox; Infrastructure interdependencies; Infrastructure resources; Infrastructures interdependencies; Optimization algorithms; Software simulation; University of British Columbia; Decision making
Abstract Disaster response management has become an important area of research in recent years, with authorities spending more resources in the area. Infrastructure resource interdependencies are key critical points for a system to operate optimally. After a disaster occurs, infrastructures would have sustained certain degrees of damage, the allocation of limited resources to maximize human survival becomes a top priority. The I2Sim (Infrastructures Interdependencies Simulator) research group at the University of British Columbia (UBC) has developed a software simulation toolbox to help authorities plan for disaster responses. This paper presents an optimization decision algorithm based on Lagrange multipliers, which provides the theoretical basis for I2Sim software decision maker layer. There is a simple scenario of three hospitals constructed with the I2Sim toolbox to illustrate the interdependencies of water and electricity. © 2012 ISCRAM.
Address (up)
Corporate Author Thesis
Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780864913326 Medium
Track Track Decision Support Methods for Complex Crises Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 235
Share this record to Facebook
 

 
Author Mark Parent; Jean-François Gagnon; Tiago H. Falk; Sébastien Tremblay
Title Modeling the Operator Functional State for Emergency Response Management Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Emergency Management; Simulation; Operator Functional State; Mental Workload; Stress
Abstract New technologies are available for emergency management experts to help them cope with challenges such as information overload, multitasking and fatigue. Among these technologies, a wide variety of physiological sensors can now be deployed to measure the Operator Functional State (OFS). To be truly useful, such measures should not only characterize the overall OFS, but also the specific dimensions such as stress or mental workload. This experiment aimed to (1) design a multi-dimensional model of OFS, and (2) test its application to an emergency management situation. First, physiological data of participants were collected during controlled experimental tasks. Then, a support vector classifier of mental workload and stress was trained. Finally, the resulting model was tested during an emergency management simulation. Results suggest that the model could be applied to emergency management situations, and leave the door open for its application to emergency response on the field.
Address (up)
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3398 ISBN 978-84-608-7984-19 Medium
Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1337
Share this record to Facebook
 

 
Author Takuya Oki; Toshihiro Osaragi
Title Wide-area Evacuation Difficulty in Densely-built Wooden Residential Areas Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Large Earthquake; Wide-area Evacuation Difficulty; Property Damage; Multi-Agent Simulation; Densely-built Wooden Residential Area
Abstract In aiming to decrease the number of casualties and people with difficulty in wide-area evacuations due to a large earthquake, it is highly important to visualize and quantify the potential danger in residential areas. In this paper, we construct a multi-agent simulation model, which describes property damage (such as building-collapse, the spread of fire and blocking of streets) and people?s evacuation behavior after an earthquake occurring. Using this simulation model, we quantify the wide-area evacuation difficulty in densely-built wooden residential areas, and evaluate the past project to improve buildings and streets based on this indicator. Furthermore, we demonstrate the effects of adding new evacuation routes between two intersections of streets with narrow width and long distance. Through these case studies, the effectiveness of our simulation model on urban disaster mitigation planning is shown.
Address (up)
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3397 ISBN 978-84-608-7984-18 Medium
Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1336
Share this record to Facebook
 

 
Author Florian Brauner; Julia Maertens; Holger Bracker; Ompe Aimé Mudimu; Alex Lechleuthner
Title Determination of the effectiveness of security measures for low probability but high consequence events: A comparison of multi-agent-simulation & process modelling by experts Type Conference Volume
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords Decision Support; Efficient Strategy Planning; Modelling and Simulation; Multi-Agent-Simulation; Prioritizing security measures; Scenario-based Risk Assessment Method
Abstract Due to the increasing danger of terrorist attacks, it is necessary to determine the preventive effects of security measures installed in e.g. public transportation systems. Since, there is no common practice to determine the preventive effects; we developed two different methodologies to analyse those effects, both are suitable for the assessment of security measures. The first method is a semi-quantitative method based on expert-estimations combined with a modelled process of an attack.The second method models the scenarios using a multi-agent-based simulation framework. Simulating a large number of runs, it is possible to derive values for indicators of interest on statistical basis. We show the suitability of both methods by applying them on a practical example of a public transportation system. In this paper we introduce both methodologies, show an exemplary application and present the strengths and weaknesses and how they can be linked to get an increased benefit.
Address (up)
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Planning, Foresight and Risk Analysis Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved yes
Call Number Serial 1322
Share this record to Facebook
 

 
Author Takuya Tsuchiya; Toshihiro Osaragi; Takuya Oki
Title Influence of Information-Hearsay on Wide-Area Evacuation at a Large Earthquake Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords evacuation behavior; information-hearsay; simulation; virtual city; wide-area evacuation
Abstract In order to evacuate smoothly and safely at a large earthquake, it is important to obtain the information on property damages (such as street-blockage and fire) and on evacuation areas by hearsay, guidance and bulletin boards. In this paper, we construct a model, which describes wide-area evacuation, information-hearsay among evacuees and guidance behavior. Using this model, we evaluate the influence of information-hearsay on wide-area evacuation in terms of the evacuation time and the risk on evacuation routes. Simulation results demonstrate that the locational information of evacuation areas and damages is the most helpful for people who are unfamiliar with an area. In addition, we discuss the effective and efficient methods of evacuation guidance. The results show that the guides contribute to reducing the evacuation time and the risk on evacuation routes of evacuees, and sharing information among guides enables more efficient and safer evacuation / guidance.
Address (up)
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1181
Share this record to Facebook
 

 
Author Hanna Honkavuo; Markus Jähi: Ari Kosonen; Kalevi Piira; Kalev Rannat; Jari Soininen, Merik Meriste, Kuldar Taveter
Title Enhancing the quality of contingency planning by simulation Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords Contingency planning; multi-authority situation; power outage; rural areas; simulation
Abstract Contingency planning is a significant challenge when dealing with rarely occurring cases. First of all, the situation related threats can be difficult to identify. Moreover, it is difficult to conclude what happens when multiple threats occur simultaneously. In this paper we introduce the idea of an application which allows seamless cooperation between many experts.

In this paper we describe a computer based simulation application which is designed to support contingency planning ? having resources available ? in extreme winter condition. First we introduce the background of the simulation – sparsely populated areas in Northern Finland where long distances and extremely cold weather can make disturbance situations even more difficult to be normalized by authorities. Secondly we present the tools that are used to build up the application. Finally, we discuss what benefits the application offers for the authorities, preparedness planning and society.
Address (up)
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1193
Share this record to Facebook
 

 
Author Yue Guan; Shifei Shen; Hong Huang
Title Assessment of the radiation doses to the public from the cesium in oceans after Fukushima Nuclear Accident Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords Tagged Fukushima NPP; numerical simulation; radiation dose; ROMS
Abstract A great number of radioactive cesium were released into sea water after Fukushima Accident. We modified the Regional Oceanic Modelling System (ROMS) to reproduce the dispersion process of the cesium in oceans. The simulated water concentration was in good agreement with observation. In order to explore the nuclear impact of these contaminant in ocean, we established a food web model to calculate the concentration in marine organisms and assess the internal dose rate to the public. The estimated internal dose rate is small compared with the recommended limit by International Atomic Energy Agency (IAEA). Then, we employed the Monte Carlo N Particle Transport Code (MCNP) to calculate the transfer coefficient. The external dose rate could be estimated by this coefficient and simulated water concentration.
Address (up)
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1196
Share this record to Facebook
 

 
Author Devin Hayes Ellis
Title On Message: Using an Online Interactive Simulation to Train Crisis Communicators Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords crisis communication and simulation; first response; public information: training
Abstract Crisis communication research emphasizes the necessity for organized, informed, and effective strategies when engaging audiences. However it is often difficult to apply best practices from academic literature in real life situations. One way to bridge this gap is with an interactive simulation, which lets participants to test their ability to operate in a crisis. This paper describes the creation and implementation of an online crisis communication simulation developed for the Department of Homeland Security (DHS). The simulation uses a server-side software platform called ICONSnet?, which allows complexity in its design with both minimal overhead costs and human facilitation difficulties.
Address (up)
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Serious Gaming Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved yes
Call Number Serial 1247
Share this record to Facebook
 

 
Author Katherine Lamb; Martijn Boosman; Jim Davies
Title Introspect Model: Competency Assessment in the Virtual World Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords Assessment; decision making; Introspect model; simulation; XVR
Abstract Over the last decade the number of operational incidents responded to, has the UK Fire and Rescue Service has diminished by approximately 40% (Knight, 2013). This reduction in incident number and consequential experiential learning opportunities has resulted in a deterioration of incident evaluation skills by the incident commanders. This paper will detail the application of the ?Introspect model? in conjunction with the use of XVR simulation software, within Oxfordshire Fire & Rescue Service (OFRS). The model has been applied in development sessions and during competence assessment over the last 6 years. In 2009, only 45% of those candidates assessed, demonstrated the desired level of competence, compared to over 70% in 2014. The ?Introspect model?focuses on the understanding of decision rationale, striving towards a state of unconscious competence within the crisis decision maker at the incident, to effectively compensate for the skill fade or inexperience, due to diminished incident exposure.
Address (up)
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Decision Support Systems Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved yes
Call Number Serial 1281
Share this record to Facebook
 

 
Author Anne Marie Barthe; Sébastien Truptil; Frédérick Bénaben
Title Towards a taxonomy of crisis management simulation tools Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords crisis management tool; simulation; taxonomy; test-bed
Abstract Experimentation is an essential element to improve crisis management and to assess crisis management tools. Unfortunately, for the moment, real crisis management experimentations are episodic and generally focus on a specific geographical and/or thematic area. This is why the European DRIVER project aims to provide a test-bed platform where crisis management testing and experimentation can be carried out with a mix of live and simulated actions. To achieve this goal, simulation tools have to be identified, described and classified in order to (i) help the user to select tools and models based on the experimentation requirements and (ii) to allow the DRIVER platform to insure exchange information between simulated actions and live actions. This paper focuses on the taxonomy used to classify simulation tools relevant for crisis management. This taxonomy is divided into three main categories of characteristics: (i) business (type/topic of the simulation), (ii) legal (terms of use), (iii) technical (integration within the DRIVER platform and/or other crisis management (simulation) tools).
Address (up)
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Decision Support Systems Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved yes
Call Number Serial 1285
Share this record to Facebook
 

 
Author Mihoko Sakurai; Jose J Gonzalez; Richard T. Watson; Jiro Kokuryo
Title A Capital Model for Disaster Resilience Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Resilience; Capital Conversion; Great East Japan Earthquake; System Dynamics; Simulation
Abstract This paper proposes a capital model for disaster resilience. A central notion to this effect is viewing an organization as a capital conversion and capital creation system (Mandviwalla et al. 2014). Systems resilience was originally defined as the measure of a system?s persistence and ability to absorb disturbances (Holling 1973). Our approach corresponds to ?resilience-1; Resilience as rebound from trauma and return to equilibrium as,? which according to Woods (2015) is one of the four main categories of disaster resilience. We develop a system dynamics model expressing the main features observed in selected municipalities affected by the Great East Japan Earthquake. We show that the model is able to describe qualitatively the processes of capital destruction by the earthquake with the associated tsunami and the subsequent capital recreation. We discuss how the system dynamics model can be used to further increase our understanding of capital conversion processes in disaster resilience.
Address (up)
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3411 ISBN 978-84-608-7984-32 Medium
Track Planning, Foresight and Risk Analysis Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1351
Share this record to Facebook
 

 
Author João Porto de Albuquerque; Cidália C. Fonte; J.-P. de Almeida; Alberto Cardoso
Title How Volunteered Geographic Information can be Integrated Into Emergency Management Practice? First Lessons Learned from an Urban Fire Simulation in the City of Coimbra Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Volunteered Geographic Information; Emergency Management; Simulation; Fire
Abstract In the past few years, volunteered geographic information (VGI) has emerged as a new resource for improving the management of emergencies. Despite the growing body of research dedicated to the use of VGI in crisis management, studies are still needed that systematically investigate the incorporation of VGI into practical emergency management. To fill this gap, this paper proposes a research design for investigating and planning the incorporation of VGI into work practices and decision-making of emergency agencies by means of simulation exercises. Furthermore, first lessons are drawn from a field study performed within a simulation exercise of an urban fire in Coimbra, Portugal, implemented together with local civil protection agents. Emergency management practitioners identified a high potential in the pictures taken in-situ by volunteers for improving situational awareness and supporting decision-making. They also pointed out to challenges associated to processing VGI and filtering high-value information in real-time.
Address (up)
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3413 ISBN 978-84-608-7984-34 Medium
Track Planning, Foresight and Risk Analysis Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1353
Share this record to Facebook
 

 
Author Gilbert Huber; Angela Righi; José Orlando Gomes; Paulo Victor Rodrigues de Carvalho; Caio Lemos; Kézia Emydgio
Title Firefighting emergency response exercise ? an analysis of standardization and resilience Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Emergency Response; Simulation; Resilience; Standardization; Firefighter
Abstract This work aims to analyse an emergency response tabletop simulation exercise undertaken as part of Rio de Janeiro (Brazil) State?s Fire Department?s officer training program and conducted at Rio de Janeiro State?s Command and Control Center (CICC). Eleven groups of three officers acting as one played the roles of unit commanders. The exercise concerned the use of a set of SOPs and our research sought to identify sources of resilience and brittleness. From an initial scenario, the inserts escalated the action so as to require the commanders? responses to exercise 12 different SOPs, many simultaneously. This provided the context for the simulation´s main goal, which was to exercise and verify the knowledge, use, and suitability of the procedure related to the management of operational events of larger scale, duration, or complexity. Data collection and analysis followed cognitive task analysis methodology and included audio and video recording of the simulation and parts of its two preparation workshops. The simulated exercise showed the relationship between standardization and resilience. Not all of the expected SOPs set were utilized, in part due to the exercise design, in part due to gaps in participants? knowledge of SOPs, and in part due to acknowledged limitations of SOPs to deal with all cases real world contexts. This need for adaptation is an aspect increasingly present in complex systems, such as the one studied here, as the unexpected variability arising from the interaction between the many different elements that compose them can exceed the capacity of the SOPs to deal with it. Knowledge and analysis of the need for adaptation can contribute on different fronts: (i) better training for more conscious and safer recognition, planning and implementation of adjustments; (ii) the design or reformulation of SOPs better able to deal with real activity by considering aspects revealed by brittleness; and (iii) artefacts design to support these demands for recognition and enforcement, ensuring increasingly resilient, efficient and secure systems.
Address (up)
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3388 ISBN 978-84-608-7984-9 Medium
Track Poster Session Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1430
Share this record to Facebook
 

 
Author Ilona Heldal; Cecilia Hammar Wijkmark
Title Simulations and Serious Games for Firefighter Training: Users' Perspective Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Informatin Systems for Crisis Response And Management Abbreviated Journal Iscram 2017
Volume Issue Pages 868-878
Keywords Emergency management; firefighter; user; training; simulation; serious games
Abstract Simulation and serious games (SSG) are advocated as promising technologies supporting training in emergency management (EM). Based on an investigation of SSG use for fire fighter training in nine countries, this paper is examining key elements and success factors that can counteract potential obstacles and challenges of SSG implementation. Data comes from interviews and observations with users and responsible managers from user organizations. By contrasting the different incentives and views regarding the SSG use, this paper contributes to a better understanding of SSG integration into organizational practices. Only by connecting the local, organizational strategies and user requirements with technical values and concrete examples can the SSG usage be experienced as successful. This connection requirement is by far not obvious since values are formulated differently by the main stakeholders and the benefits at one organization are not necessarily the same as at another. In this context, the added values of SSG solutions need to be more explicitly connected to the goals of traditional classroom and live training.
Address (up)
Corporate Author Thesis
Publisher Iscram Place of Publication Albi, France Editor Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track New Technologies for Crisis Management Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 2072
Share this record to Facebook
 

 
Author Lizheng Deng; Hongyong Yuan; Lida Huang
Title Optimal UAV 3D Path Planning in Mountainous Environments for Post-Earthquake Multi-region Search Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 1122-1122
Keywords Post-earthquake rescue, UAV search, 3D path simulation, real mountainous terrain, hybrid algorithm.
Abstract During the earthquake rescue, rapidly locating the trapped person is a critical issue to reduce casualties. Compared with the ground search after the earthquake, the unmanned aerial vehicle (UAV) life detection is not only more expeditious but also safer. For shortening the mission completion time of UAV, we propose the coupling method of Dijkstra's algorithm and simulated annealing (SA) algorithm to optimize the search path. Concisely, the mathematical model is further abstracted as the Traveling Salesman Problem (TSP) and the shortest loop can be obtained by SA algorithm. The real geo-environment of Jiuzhaigou and the actual large-scale rescue scenarios are taken into consideration. Setting six key search areas as our life detection objects, the UAV 3D path simulation is conducted with MATLAB, which achieves the obstacle avoidance. Our UAV path planning method can significantly speed up the search process and save more people in the post-disaster search.
Address (up)
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Poster Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2185
Share this record to Facebook
 

 
Author Ahmed S. Khalaf; Poom Pianpak; Sultan A. Alharthi; Zahra NaminiMianji; Ruth Torres; Son Tran; Igor Dolgov; Zachary O. Toups
Title An Architecture for Simulating Drones in Mixed Reality Games to Explore Future Search and Rescue Scenarios Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 971-982
Keywords Mixed Reality, Drones, Simulations, Disaster Response, Search and Rescue
Abstract The proliferation of unmanned aerial systems (i.e., drones) can provide great value to the future of search and rescue. However, with the increase adoption of such systems, issues around hybrid human-drone team coordination and planning will arise. To address these early challenges, we provide insights into the development of testbeds in the form of mixed reality games with simulated drones. This research presents an architecture to address challenges and opportunities in using drones for search and rescue. On this architecture, we develop a mixed reality game in which human players engage with the physical world and with gameplay that is purely virtual. We expect the architecture to be useful to a range of researchers an practitioners, forming the basis for investigating and training within this unique, new domain.
Address (up)
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Open Track Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2169
Share this record to Facebook
 

 
Author Björn Johan Erik Johansson; Joeri van Laere; Peter Berggren
Title Evaluating Team Resilience in Simulator-Based Crisis Management Training Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 914-923
Keywords Team resilience, assessment, simulation games, training, Systemic Resilience Model
Abstract Currently, there is a lack of assessment approaches for evaluation of resilient capabilities in simulation games. This paper presents work-in-progress to create such an instrument to be used in crisis management simulation games for the fuel, food, and finance sectors. The “Team Resilience Assessment Method for Simulation” (TRAMS) is based on the Systemic Resilience Model and departs from the assumption that resilient crisis management teams will be able to develop strategies for assuring that anticipation, monitoring, response, recovery, and learning are established and maintained in their respective organizations as well as in the crisis management team. A prototype version of the TRAMS, based on the experiences of representatives from the involved sectors and firmly related to resilience theory, is presented and discussed. The TRAMS instrument will be tested in 30 planned simulations games including participants from the fuel, food, and finance sectors.
Address (up)
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Designing for Resilience Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2163
Share this record to Facebook
 

 
Author Xiaoyong Ni; Hong Huang; Shiwei Zhou; Boni Su; Jianchun Zheng; Wei Zhu; Huali Liu
Title Simulation of The Urban Waterlogging and Emergency Response Strategy at Subway Station's Entry-exit Platform in Heavy Rainstorm Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 99-120
Keywords Simulation, urban waterlogging, subway stations, emergency response strategy
Abstract Underground space like subway stations is prone to be flooded which can lead to severe and unpredictable damage and even threaten human lives. In this paper, four groups of contrastive simulation of urban waterlogging at two subway stations' entry-exit platforms in heavy rainstorm are conducted, and emergency response strategies are suggested. A waterlogging simulation method named UPFLOOD based on shallow water equations is proposed considering complex topography. It has been found that the waterlogging at subway station's entry-exit platforms is easily influenced by several factors and the site selection of the subway stations is very important. A disaster process construction method based on PN model is proposed and it has been found that the response strategies including plugging, drainage and evacuation are important for disaster mitigation. This study helps decision makers to response quickly to meet the emergency of the waterlogging disaster at subway stations caused by heavy rainstorm.
Address (up)
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Analytical Modeling and Simulation Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2093
Share this record to Facebook
 

 
Author Sebastian Lindner; Stephan Kühnel; Hans Betke; Stefan Sackmann
Title Simulating Spontaneous Volunteers – A Conceptual Model Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 159-169
Keywords spontaneous volunteers, disaster management, agent-based simulation, conceptual model, SUV behavior
Abstract Recent disasters have revealed growing numbers of citizens who participate in responses to disasters. These so-called spontaneous unaffiliated on-site volunteers (SUVs) have become valuable resources for mitigating disaster scales. However, their self-coordination has also led to harm or putting themselves in danger. The necessity to coordinate SUVs has encouraged researchers to develop coordination approaches, yet testing, evaluating, and validating these approaches has been challenging, as doing so requires either real disasters or field tests. In practice, this is usually expensive, elaborate, and/or impossible, in part, to conduct. Simulating SUVs' behaviors using agent-based simulations seems promising to address this challenge. Therefore, this contribution presents a conceptual model that provides the basis for implementing SUV agents in simulation software to perform suitable simulations and to forecast citizens' behaviors under a given set of circumstances. To achieve adequate simulations, the conceptual model is based on the identification of 25 behavior-affecting attributes.
Address (up)
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Command and control studies Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2097
Share this record to Facebook
 

 
Author Stefan Schauer; Stefan Rass; Sandra König; Thomas Grafenauer; Martin Latzenhofer
Title Analyzing Cascading Effects among Critical Infrastructures Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 428-437
Keywords Cascading effects, interdependent critical infrastructures, Markov chains, simulation
Abstract In this article, we present a novel approach, which allows not only to identify potential cascading effects within a network of interrelated critical infrastructures but also supports the assessment of these cascading effects. Based on percolation theory and Markov chains, our method models the interdependencies among various infrastructures and evaluates the possible consequences if an infrastructure has to reduce its capacity or is failing completely, by simulating the effects over time. Additionally, our approach is designed to take the intrinsic uncertainty into account, which resides in the description of potential consequences a failing critical infrastructure might cause, by using probabilistic state transitions. In this way, not only the critical infrastructure's risk and security managers are able to evaluate the consequences of an incident anywhere in the network but also the emergency services can use this information to improve their operation in case of a crisis and anticipate potential trouble spots.
Address (up)
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Planning, Foresight and Risk Analysis Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2120
Share this record to Facebook
 

 
Author Henrik Berndt; Daniel Wessel; Lennard Willer; Michael Herczeg; Tilo Mentler
Title Immersion and Presence in Virtual Reality Training for Mass Casualty Incidents Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 806-817
Keywords User-Centered Design, Virtual Reality Training Simulations, Mass Casualty Incidents, Immersion, Presence
Abstract Preparation for mass casualty incidents (MCIs) is highly important but difficult to accomplish. Incidents are rare, often complex, and training is costly. However, with the development of consumer grade virtual reality (VR) hardware, immersive training simulations have become affordable for competency training. To make simulations effective, users have to be immersed and feel present in the simulation. We have developed a VR training system for MCIs in a user centered design process with emergency personnel and further improved the system to increase immersion and presence. In an evaluation with eighteen paramedic trainees, we compare six hypothesized design improvements between the two simulations, such as using a menu or a simulated emergency bag for interaction. Results indicate clear user preferences of interaction styles related to immersion and presence in MCI VR simulations.
Address (up)
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Case studies and reflections from practice Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2153
Share this record to Facebook
 

 
Author Sultan A. Alharthi; Nick LaLone; Ahmed S. Khalaf; Ruth Torres; Lennart Nacke; Igor Dolgov; Zachary O. Toups
Title Practical Insights into the Design of Future Disaster Response Training Simulations Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 818-830
Keywords Training, Simulation, Disaster Response, Coordination, Mixed Reality
Abstract A primary component of disaster response is training. These educational exercises provide responders with the knowledge and skills needed to be prepared when disasters happen. However, traditional training methods, such as high-fidelity simulations (e.g., real-life drills) and classroom courses, may fall short of providing effective and cost-efficient training that is needed for today's challenges. Advances in technology open a wide range of opportunities for training using computer-mediated simulations and exercises. These exercises include the use of mixed reality games and wearable computers. Existing studies report on the usefulness of these technologies for training purposes. This review paper synthesizes prior research and development of disaster response simulations and identifies challenges, opportunities, and lessons learned. Through this review, we provide researchers and designers with an overview of current practices in designing training simulations and contribute practical insights into the design of future disaster response training.
Address (up)
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Case studies and reflections from practice Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2154
Share this record to Facebook
 

 
Author Gerhard Wickler; Austin Tate; Stephen Potter
Title Integrating discrete event and process-level simulation for flexible training in the I-X framework Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 355-359
Keywords Discrete event simulation; Information systems; Personnel training; Activity modeling; Agent Framework; Discrete-event simulators; Emergency response; Flexible trainings; Fully integrated; HTN planning; Training scenario; Emergency services
Abstract The aim of this paper is to describe I-Sim, a simulation tool that is a fully integrated part of the underlying agent framework, I-X. I-Sim controls a discrete event simulator, based on the same activity model that is shared between all I-X components, and multiple process-level simulators that model the continuous change caused by actions that are considered as primitives by the rest of the system. The primary purpose of this tool is to support instructors during exercises that are used for training in emergency response. The main advantage the I-Sim tool gives the instructors is flexibility, allowing them to orchestrate and modify existing training scenarios on the fly, adapting them to trainees' needs as required.
Address (up) AIAI, University of Edinburgh, United Kingdom
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track ASCM Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1086
Share this record to Facebook
 

 
Author Sigmund Kluckner; Katrin Ellice Heintze; Willi Wendt
Title Designing for the user: Tailoring a simulation software interface to the needs of crisis managers Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 528-532
Keywords Computer software; Graphical user interfaces; Information systems; Management information systems; Crisis management; Crisis management systems; Graphical user interfaces (GUI); Simulation; Simulation software; User centered designs; Warning; Working environment; Design
Abstract This paper presents the development and evaluation for a graphical user interface (GUI) of a simulation tool in crisis management, which follows a User-Centered Design (UCD) approach. UCD places the focus of the development on the needs, abilities and the background of end users, by passing iteratively through four development phases: (1) the analysis of the end users' personal background and work context; (2) the specification of requirements; (3) the design of the system; and (4) the final evaluation of the design with end users. This approach is particularly suited for crisis management systems, since their efficient usage has profound impacts on the execution of crisis response actions, and in turn on the well-being of citizens. Our work gives valuable insights into the characteristics and the working environment of crisis management practitioners. Furthermore, it sheds light on the design issues which should be taken into account when developing GUIs in crisis management.
Address (up) AIT – Austrian Institute of Technology, Austria; University of Stuttgart IAT, Germany
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Practitioner Cases and Practitioner-Centered Research Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 657
Share this record to Facebook
 

 
Author Stefan Schauer; Stefan Rass; Sandra König
Title Simulation-driven Risk Model for Interdependent Critical Infrastructures Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 404-415
Keywords risk model, risk assessment, interdependent critical infrastructures, cross-domain simulation
Abstract Critical infrastructures (CIs) in urban areas or municipalities have evolved into strongly interdependent and highly complex networks. To assess risks in this sophisticated environment, classical risk management approaches require extensions to reflect those interdependencies and include the consequences of cascading effects into the assessment. In this paper, we present a concept for a risk model specifically tailored to those requirements of interdependent CIs. We will show how the interdependencies can be reflected in the risk model in a generic way such that the dependencies among CIs on different levels of abstraction can be described. Furthermore, we will highlight how the simulation of cascading effects can be directly integrated to consistently represent the assessment of those effects in the risk model. In this way, the model supports municipalities' decision makers in improving their risk and resilience management of the CIs under their administration.
Address (up) AIT Austrian Institute of Technology GmbH; System Security Group, Department of Applied Informatics, Universitaet Klagenfurt; Austrian Institute of Technology
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Enhancing Protection of Critical Infrastructures Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes stefan.schauer@ait.ac.at Approved no
Call Number ISCRAM @ idladmin @ Serial 2342
Share this record to Facebook