|   | 
Details
   web
Records
Author Tim Schoenharl; Greg Madey; Gábor Szabó; Albert-László Barabási
Title WIPER: A multi-agent system for emergency response Type Conference Article
Year 2006 Publication Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2006
Volume Issue Pages 282-287
Keywords Computer simulation; Information services; Information systems; Multi agent systems; Multimedia systems; Service oriented architecture (SOA); Web services; Agent based simulation; Emergency planners; Emergency response; Emergency response systems; Emergency situation; GIS modeling; Integrated systems; Web-based interface; Emergency services
Abstract This paper describes the proposed WIPER system. WIPER is intended to provide emergency planners and responders with an integrated system that will help to detect possible emergencies, as well as to suggest and evaluate possible courses of action to deal with the emergency. The system is designed as a multi-agent system using web services and the service oriented architecture. Components of the system for detecting and mitigating emergency situations can be added and removed from the system as the need arises. WIPER is designed to evaluate potential plans of action using a series of GIS enabled Agent-Based simulations that are grounded on realtime data from cell phone network providers. The system relies on the DDDAS concept, the interactive use of partial aggregate and detailed realtime data to continuously update the system and allow emergency planners to stay updated on the situation. The interaction with the system is done using a web-based interface and is composed of several overlaid layers of information, allowing users rich detail and flexibility.
Address University of Notre Dame, Dept of Computer Science and Engineering, Notre Dame, IN 46556, United States; University of Notre Dame, Dept of Physics, Notre Dame, IN 46556, United States
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Newark, NJ Editor B. Van de Walle, M. Turoff
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9090206019; 9789090206011 Medium
Track MULTIAGENT SYSTEMS FOR EMERGENCY MANAGEMENT Expedition Conference 3rd International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 921
Share this record to Facebook
 

 
Author Sebastian Lindner; Hans Betke; Stefan Sackmann
Title Attributes for Simulating Spontaneous On-Site Volunteers Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2017
Volume Issue Pages 846-856
Keywords spontaneous volunteers; disaster management; simulation; coordination; software agents
Abstract Disaster managers report that several disasters would have turned out on a dramatic scale without spontaneous unaffiliated on-site volunteers (SUV). Since SUVs are usually not integrated in chains of command and behave in a certain pattern of its own, coordination of SUVs becomes a challenge for disaster management. One key to coordination is communication and adequate support by information systems. However, real disasters or field tests are usually too expensive, elaborate, and partly impossible when coordination of SUVs is to be exercised or novel tools and methods must be evaluated. Simulating the SUV's behavior by software-agents is considered a constructive solution, however, the specification of simulation settings is an open research field. Therefore, this paper aims at identifying relevant attributes affecting SUVs behavior by a state-of-the-art literature review, classifying and discussing the attributes. Our results provide a sound basis for defining SUV-agents and performing suitable simulations in the future.
Address Chair of Information Management Martin Luther University, Halle, Germany
Corporate Author Thesis
Publisher Iscram Place of Publication Albi, France Editor Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track New Technologies for Crisis Management Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 2070
Share this record to Facebook
 

 
Author Sebastian Lindner; Stefan Sackmann; Hans Betke
Title Simulating Spontaneous Volunteers: A System Entity Structure for Defining Disaster Scenarios Type Conference Article
Year 2019 Publication Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2019
Volume Issue Pages
Keywords Agent-based Simulation, Spontaneous Volunteers, Spontaneous Volunteer Coordination Scenario Definition Language (SVCDSL), System Entity Structure (SES), Disaster Scenario
Abstract Fast and easy communication, e.g. via Twitter or Facebook, encourages self-coordination between spontaneous

volunteers in disasters. Unfortunately, this is more and more challenging official disaster management. The need

for the directed coordination of spontaneous volunteers triggered researchers to develop effective coordination

approaches. However, evaluating and comparing such approaches as well as their exercising are lacking a

standardized way to describe repeatable disaster scenarios, e.g. for simulations. Therefore, we present a novel

System Entity Structure (SES) for describing disaster scenarios considering the disaster environment,

communication infrastructure, disaster management, and population of spontaneous volunteers. The SES is

discussed as a promising scheme for including spontaneous volunteers in disaster scenarios on a general level. Its

applicability is demonstrated by a Pruned Entity Structure derived from a real disaster scenario. Based on the

results, we give an outlook on our subsequent research, the XML-based Spontaneous Volunteer Coordination

Scenario Definition Language (SVCSDL).
Address Martin Luther University Halle-Wittenberg, Germany
Corporate Author Thesis
Publisher Iscram Place of Publication Valencia, Spain Editor Franco, Z.; González, J.J.; Canós, J.H.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-09-10498-7 Medium
Track T7- Planning, Foresight and Risk Analysis Expedition Conference 16th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2019)
Notes Approved no
Call Number Serial 1885
Share this record to Facebook
 

 
Author Sebastian Lindner; Stephan Kühnel; Hans Betke; Stefan Sackmann
Title Simulating Spontaneous Volunteers – A Conceptual Model Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 159-169
Keywords spontaneous volunteers, disaster management, agent-based simulation, conceptual model, SUV behavior
Abstract Recent disasters have revealed growing numbers of citizens who participate in responses to disasters. These so-called spontaneous unaffiliated on-site volunteers (SUVs) have become valuable resources for mitigating disaster scales. However, their self-coordination has also led to harm or putting themselves in danger. The necessity to coordinate SUVs has encouraged researchers to develop coordination approaches, yet testing, evaluating, and validating these approaches has been challenging, as doing so requires either real disasters or field tests. In practice, this is usually expensive, elaborate, and/or impossible, in part, to conduct. Simulating SUVs' behaviors using agent-based simulations seems promising to address this challenge. Therefore, this contribution presents a conceptual model that provides the basis for implementing SUV agents in simulation software to perform suitable simulations and to forecast citizens' behaviors under a given set of circumstances. To achieve adequate simulations, the conceptual model is based on the identification of 25 behavior-affecting attributes.
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Command and control studies Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2097
Share this record to Facebook
 

 
Author Shane Errol Halse; Rob Grace; Jess Kropczynski; Andrea Tapia
Title Simulating real-time Twitter data from historical datasets Type Conference Article
Year 2019 Publication Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2019
Volume Issue Pages
Keywords Twitter, Simulation, Crisis Response, Social Media
Abstract In this paper, we will discuss a system design for simulating social media data based on historical datasets. While many datasets containing data collected from social media during crisis have become publicly available, there is a lack of tools or systems can present this data on the same timeline as it was originally posted. Through the design and use of the tool discussed in this paper, we show how historical datasets can be used for algorithm testing, such as those used in machine learning, to improve the quality of the data. In addition, the use of simulated data also has its benefits in training scenarios, which would allow participants to see real, non-fabricated social media messages in the same temporal manner as found on a social media platform. Lastly, we will discuss the positive reception and future improvements suggested by 911 Public Service Answering Point (PSAP) professionals.
Address PSU, United States of America;University of Cincinnati
Corporate Author Thesis
Publisher Iscram Place of Publication Valencia, Spain Editor Franco, Z.; González, J.J.; Canós, J.H.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-09-10498-7 Medium
Track T8- Social Media in Crises and Conflicts Expedition Conference 16th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2019)
Notes Approved no
Call Number Serial 1898
Share this record to Facebook
 

 
Author André Simões; Armanda Rodrigues; Patricia Pires; Luis Sá
Title Evaluating emergency scenarios using historic data: Flood management Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Artificial intelligence; Cellular automata; Computer simulation; Decision support systems; Flood control; Floods; Geographic information systems; Information systems; Risk management; Civil protection; Complex evaluations; Development process; Emergency management; Emergency scenario; Flood forecasting models; Flood management; Physical conditions; Risk perception
Abstract The evaluation of an emergency scenario is often based on the use of simulation models. The specificity of these models involves the need for a complex evaluation of the problem domain, including the physical conditions behind the considered threat. Based on emergency occurrences data, provided by the Portuguese National Civil Protection Authority, we are currently developing a methodology for evaluating a real situation, based on past occurrences. The aim is to develop a platform that will enable the evaluation of a risk scenario based on existing civil protection data. The methodology under development should enable the evaluation of different scenarios based on the collected available data. This will be achieved thanks to the facilitated configuration of several aspects, such as the geographical region and relevant properties of the considered threat. In this paper, we describe the methodology development process and the current state of the platform for risk evaluation.
Address CITI, FCT/UNL, Portugal; Autoridade Nacional de Protecção Civil, Portugal
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Geographic Information Science Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 952
Share this record to Facebook
 

 
Author Stefan Schauer; Stefan Rass; Sandra König
Title Simulation-driven Risk Model for Interdependent Critical Infrastructures Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 404-415
Keywords risk model, risk assessment, interdependent critical infrastructures, cross-domain simulation
Abstract Critical infrastructures (CIs) in urban areas or municipalities have evolved into strongly interdependent and highly complex networks. To assess risks in this sophisticated environment, classical risk management approaches require extensions to reflect those interdependencies and include the consequences of cascading effects into the assessment. In this paper, we present a concept for a risk model specifically tailored to those requirements of interdependent CIs. We will show how the interdependencies can be reflected in the risk model in a generic way such that the dependencies among CIs on different levels of abstraction can be described. Furthermore, we will highlight how the simulation of cascading effects can be directly integrated to consistently represent the assessment of those effects in the risk model. In this way, the model supports municipalities' decision makers in improving their risk and resilience management of the CIs under their administration.
Address AIT Austrian Institute of Technology GmbH; System Security Group, Department of Applied Informatics, Universitaet Klagenfurt; Austrian Institute of Technology
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Enhancing Protection of Critical Infrastructures Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes stefan.schauer@ait.ac.at Approved no
Call Number ISCRAM @ idladmin @ Serial 2342
Share this record to Facebook
 

 
Author Stefan Schauer; Stefan Rass; Sandra König; Thomas Grafenauer; Martin Latzenhofer
Title Analyzing Cascading Effects among Critical Infrastructures Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 428-437
Keywords Cascading effects, interdependent critical infrastructures, Markov chains, simulation
Abstract In this article, we present a novel approach, which allows not only to identify potential cascading effects within a network of interrelated critical infrastructures but also supports the assessment of these cascading effects. Based on percolation theory and Markov chains, our method models the interdependencies among various infrastructures and evaluates the possible consequences if an infrastructure has to reduce its capacity or is failing completely, by simulating the effects over time. Additionally, our approach is designed to take the intrinsic uncertainty into account, which resides in the description of potential consequences a failing critical infrastructure might cause, by using probabilistic state transitions. In this way, not only the critical infrastructure's risk and security managers are able to evaluate the consequences of an incident anywhere in the network but also the emergency services can use this information to improve their operation in case of a crisis and anticipate potential trouble spots.
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Planning, Foresight and Risk Analysis Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2120
Share this record to Facebook
 

 
Author Stella Polikarpus; Tobias Ley; Hans Hazebroek; Graham Edgar; Geoffrey Sallis; Steven Baker; Anna Figueras Masip
Title Authoring Virtual Simulations to Measure Situation Awareness and Understanding Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 428-433
Keywords situation awareness (SA); situation understanding (SU); FireFront; The Collaborative Authoring Process Model (CAPM) for Virtual Simulations (VS); actual situation awareness (ASA); actual situation understanding (ASU); perceived situation awareness (PSA)
Abstract Measuring situation awareness (SA) and situation understanding (SU) is an important topic for Command & Control research. Virtual simulations (VS) have been proposed as a suitable method for measuring SA/U, but, there is little research into how to build scenarios for VS so that SA/U can be measured reliably. In this study, we used two different VS scenarios and the Quantitative Analysis of Situation Awareness (QASA) method to measure, and provide feedback on, actual and perceived SA/U. Two VS scenarios were tested in Estonia with 36 trainees. The results of the different scenarios were compared to establish whether the scenario storylines and authoring process resulted in differences in SA or SU. We conclude that reliable assessment results were produced with both authoring processes, and further suggest that the Collaborative Authoring Process Model for Virtual Simulations (CAPM) be used for VS creation.
Address The Estonian Academy of Security Sciences; Tallinn University; Nederlands Instituut Publieke Veiligheid; University of Gloucestershire; Insitut de Seguretat Publica de Catalunya
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Command and Control Studies Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2430
Share this record to Facebook
 

 
Author Stella Polikarpus; Tobias Ley; Katrin Poom-Valickis
Title Collaborative Authoring of Virtual Simulation Scenarios for Assessing Situational Awareness Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 229-237
Keywords situational awareness (SA), virtual simulation, virtual simulation scenario, process model, Effective Command Behavioral Marker Framework
Abstract Situational awareness (SA), the ability to perceive, comprehend and predict situation around you and it is a key in attending any incident as critical foundation for successful decision-making. Because incidents are solitary events, development and assessment of SA presents a significant challenge. In this article we analyze the authoring process of twenty-two scenarios implemented in the XVR on-scene virtual simulation software used to assess rescue incident commanders' (ICs) SA. To allow the scenarios to be used by different assessors, the Collaborative Authoring Process Model for Virtual Simulation Scenarios (CAPM) was developed. In Estonia, 473 assessments were recorded in Effective Command database and analysed by all three levels of SA as recommended by Endsley (2000). Introduction of CAPM resulted in scenarios being re-used by different assessors for authentic SA measuring. In the last sections of this article, we introduce our suggestions to improve virtual scenario design and SA research.
Address Tallinn University; Tallinn University; Tallinn University
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Command & Control Studies Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes stella.polikarpus@gmail.com Approved no
Call Number ISCRAM @ idladmin @ Serial 2328
Share this record to Facebook
 

 
Author Stensrud, R.; Valaker, S.
Title Methods to meet changes in the security environment a proposal of qualitative and quantitative assessment attributes for coordination performance Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 676-691
Keywords Modelling And Simulation; Multiteam Systems; Control Theory; Emergency Response
Abstract The use of methods to inform changes of command and control has long been important, in particular through empirical surveys and computational simulation. In this article, we focus on a particular type of control: “bump less” time-shift of authority during emergency response where it is not desirable to interrupt task resolution (Dess et al.,1984). As an example we address a particular type of control in a sociotechnical use case, i.e. ensuring coordinated action among human and non-human entities, and specifically use as a case shift of who ensures coordinated action when what entities are participating fluctuate over time, yet there is a need to sustain coordination (e.g. due to criticality of sustained performance). We do some work to detail a sociotechnical control mechanism and we present methods for examining the influence such control may have on performing both planned, prescribed, organizational task work as well as dynamic, non-prescribed tasks (Stanton et al., 2018). We argue that measures of high fidelity, with high specificity, defined before task resolution (feedforward) may be particularly important in prescribed change due to the possibility to define clear goals for coordinating and detailing who holds coordination authority. For dynamic change, on the other hand supporting technology that enable a sensing and processing of feedback the number of agents/entities undergoing change is not predetermined and the change of who is best suited to coordinate authority is less clear. Our theorizing is illustrated by using traditional linear control theory emulating shift of control nuanced by an emergency use case. In conclusion, we suggest future directions for research as well as practical implications.
Address Norwegian Defence Research Establishment; Norwegian Defence Research Establishment
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Command and Control Studies Expedition Conference
Notes http://dx.doi.org/10.59297/OQYD8914 Approved no
Call Number ISCRAM @ idladmin @ Serial 2556
Share this record to Facebook
 

 
Author Sultan A. Alharthi; Nick LaLone; Ahmed S. Khalaf; Ruth Torres; Lennart Nacke; Igor Dolgov; Zachary O. Toups
Title Practical Insights into the Design of Future Disaster Response Training Simulations Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 818-830
Keywords Training, Simulation, Disaster Response, Coordination, Mixed Reality
Abstract A primary component of disaster response is training. These educational exercises provide responders with the knowledge and skills needed to be prepared when disasters happen. However, traditional training methods, such as high-fidelity simulations (e.g., real-life drills) and classroom courses, may fall short of providing effective and cost-efficient training that is needed for today's challenges. Advances in technology open a wide range of opportunities for training using computer-mediated simulations and exercises. These exercises include the use of mixed reality games and wearable computers. Existing studies report on the usefulness of these technologies for training purposes. This review paper synthesizes prior research and development of disaster response simulations and identifies challenges, opportunities, and lessons learned. Through this review, we provide researchers and designers with an overview of current practices in designing training simulations and contribute practical insights into the design of future disaster response training.
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Case studies and reflections from practice Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2154
Share this record to Facebook
 

 
Author Tomoichi Takahashi
Title Agent-based disaster simulation evaluation and its probability model interpretation Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 369-376
Keywords Disasters; Probability; Agent based simulation; Agent based social simulation; Agent-based approach; Agent-based social simulations; Disaster simulation; Evaluation method; Local government; Probability modeling; Computer simulation
Abstract Agent-based simulations enable the simulation of social phenomenon by representing human behaviors using agents. Human actions such as evacuating to safe havens or extinguishing fires in disaster areas are important during earthquakes. The inclusion of human actions in calculating the damage at disaster sites provides useful data to local governments for planning purposes. In order to practically apply these simulation results, these results should be tested using actual data. Further, these results should be analyzed and explained in a manner that people who are not agent programmers can also understand easily. First, the possibility of applying agent-based approaches to social tasks is shown by comparing the simulation results with those obtained from other methods. Next, we propose a method to present agent behaviors using a probability model and discuss the results of applying this method to the RoboCup Rescue simulation data. These will delve into future research topics for developing agent based social simulations to practical ones.
Address Meijo University, Japan
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track ASCM Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 988
Share this record to Facebook
 

 
Author Takuya Oki; Toshihiro Osaragi
Title Wide-area Evacuation Difficulty in Densely-built Wooden Residential Areas Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Large Earthquake; Wide-area Evacuation Difficulty; Property Damage; Multi-Agent Simulation; Densely-built Wooden Residential Area
Abstract In aiming to decrease the number of casualties and people with difficulty in wide-area evacuations due to a large earthquake, it is highly important to visualize and quantify the potential danger in residential areas. In this paper, we construct a multi-agent simulation model, which describes property damage (such as building-collapse, the spread of fire and blocking of streets) and people?s evacuation behavior after an earthquake occurring. Using this simulation model, we quantify the wide-area evacuation difficulty in densely-built wooden residential areas, and evaluate the past project to improve buildings and streets based on this indicator. Furthermore, we demonstrate the effects of adding new evacuation routes between two intersections of streets with narrow width and long distance. Through these case studies, the effectiveness of our simulation model on urban disaster mitigation planning is shown.
Address
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3397 ISBN 978-84-608-7984-18 Medium
Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1336
Share this record to Facebook
 

 
Author Takuya Tsuchiya; Toshihiro Osaragi; Takuya Oki
Title Influence of Information-Hearsay on Wide-Area Evacuation at a Large Earthquake Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords evacuation behavior; information-hearsay; simulation; virtual city; wide-area evacuation
Abstract In order to evacuate smoothly and safely at a large earthquake, it is important to obtain the information on property damages (such as street-blockage and fire) and on evacuation areas by hearsay, guidance and bulletin boards. In this paper, we construct a model, which describes wide-area evacuation, information-hearsay among evacuees and guidance behavior. Using this model, we evaluate the influence of information-hearsay on wide-area evacuation in terms of the evacuation time and the risk on evacuation routes. Simulation results demonstrate that the locational information of evacuation areas and damages is the most helpful for people who are unfamiliar with an area. In addition, we discuss the effective and efficient methods of evacuation guidance. The results show that the guides contribute to reducing the evacuation time and the risk on evacuation routes of evacuees, and sharing information among guides enables more efficient and safer evacuation / guidance.
Address
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1181
Share this record to Facebook
 

 
Author Tobias Meuser; Lars Baumgärtner; Patrick Lieser
Title Pandemic Skylines: Digital Twins for More Realism in Epidemic Simulations Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 133-145
Keywords Simulation, Disaster Communication, Pandemic
Abstract In the recent months, many measures have been taken by governments to fight the COVID-19 pandemic. Due to the unknown properties of the disease and a lack of experience with handling pandemics, the effectiveness of measures taken was often hard to evaluate the effectiveness of measures, leading to inefficient measures and late execution of efficient measures. Many models have been proposed to evaluate the performance of these measures on the spreading of a pandemic, but these models are commonly vastly simplified and, thus, limited in expressiveness. To extend the expressiveness of the models, we developed a epidemic simulation inside of a flexible and scalable city simulation game to analyse the counter measures to a pandemic in this city and spot common places of infection on a microscopic level. The configurability of our developed epidemic simulation will also be useful for potential future pandemics.
Address TU Darmstadt – KOM; TU Darmstadt – STG; TU Darmstadt – KOM
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes tobias.meuser@kom.tu-darmstadt.de Approved no
Call Number ISCRAM @ idladmin @ Serial 2320
Share this record to Facebook
 

 
Author Toshihiro Osaragi; Koji Ogino; Noriaki Hirokawa; Takuya Oki
Title Severity of Crowding at Evacuation Shelters after a Major Earthquake Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 22-43
Keywords large earthquake; evacuation shelter; building damage; water-supply failure; simulation; evacuation behavior
Abstract A number of residents are presumed to evacuate to shelters after a large earthquake. However, the congestion of evacuation shelters has not been enough discussed. In this paper, we propose an evacuation behavior model, which includes sub-models on building damage, water-supply failure, power failure, fire damage, and elevator stall. Using the model estimated using the survey data of the past earthquakes, we discuss the congestion of evacuation shelters under the assumption of Tokyo Bay northern earthquake. Finally, we discuss improvement of water pipes for earthquake resistance to reduce the congestion degree of evacuation shelters, which varies according to regional vulnerability.
Address Tokyo Institute of Technology
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Analytical Modeling and Simulation Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2397
Share this record to Facebook
 

 
Author Sébastien Tremblay; Peter Berggren; Martin Holmberg; Rego Granlund; Marie-Eve Jobidon; Paddy Turner
Title A multiteam international simulation of joint operations in crisis response Type Conference Article
Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012
Volume Issue Pages
Keywords Deforestation; Emergency services; Fires; Human resource management; Information systems; Virtual reality; Collaborative process; Experimental platform; Horizontal organizations; Organizational structures; Quantitative measures; Shared understanding; Simulation environment; Situation assessment; Information management; Information Retrieval; Management
Abstract Concepts such as trust, shared understanding, cultural differences, mental workload, and organizational structure all impact upon the effectiveness of an organization (e.g., Tindale & Kameda, 2000), and even more so in the context of large scale multinational operations (e.g, Smith, Granlund, & Lindgen, 2010). In order to study these concepts we plan a multinational, distributed experiment with participants from three nations collaborating in the same virtual environment: Canadian, British, and Swedish participants will work together as part of a multinational MTS to deal with a complex task and gain control of a crisis situation. Empirical research on MTS remains limited (see, e.g., DeChurch & Marks, 2006) particularly at the multinational level where the investigation of MTS has been so far focused on case studies and exercises (e.g., Goodwin, Essens, & Smith, 2012). Therefore, there is a need to empirically study multinational MTS in order to assess the specific issues that multinational operations face, notably cultural and languages differences. The simulation environment used as experimental platform for this project is C3Fire (www.c3fire.org, Granlund & Granlund, 2011). C3Fire creates an environment whereby teams must work together to resolve a crisis in the firefighting domain, with the goal of evacuating people in critical areas, putting out the forest fire, and protecting buildings and other areas of value from the burning forest fire. This platform makes it possible to study participants' collaborative processes when dealing with a set of crisis scenarios in the context of a simulated emergency response situation. To deal efficiently with the crisis management operation, participants need to prioritize between different objectives, identify and protect critical areas, and plan and implement activities based on given resources. All these tasks are distributed between team members, compelling participants to exchange information and coordinate within and between teams to execute the task. The task is divided into three areas of responsibility as follows: 1) Information and Planning, responsible for situation assessment and providing the operating picture; 2) Operation and Logistic, responsible for intervention and resource management; and 3) Search and Rescue, responsible for research and management of civilians. C3Fire is designed to: 1) achieve an optimal compromise between internal and external validity; 2) show flexibility in scenario configuration (spectrum of units and roles – including search and rescue functions; Tremblay et al., 2010), allowing researchers to capture emergency response and crisis management and rapid response planning; 3) be highly configurable for testing many different types of teams (e.g., hierarchical vs. horizontal organizations); and 4) readily provide objective, non-intrusive metrics for assessing teamwork effectiveness (including macrocognitive functions and team processes) as well as quantitative measures of task performance (that take into account conflicting mission goals). © 2012 ISCRAM.
Address Université Laval, QC, Canada; FOI, Linkoping, Sweden; FHS, Stockholm, Sweden; Santa Anna Research Institute, Sweden; Defence R and D Canada, Toronto, ON, Canada; Cranfield University, Defence Academy, United Kingdom
Corporate Author Thesis
Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780864913326 Medium
Track Poster Session Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 218
Share this record to Facebook
 

 
Author Usman Anjum; Vladimir Zadorozhny; Prashant Krishnamurthy
Title TBAM: Towards An Agent-Based Model to Enrich Twitter Data Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 146-158
Keywords Agent-Based Model, Twitter, Modeling and Simulation, Event Detection
Abstract Twitter is widely being used by researchers to understand human behavior, e.g. how people behave when an event occurs and how it changes their microblogging pattern. The changing microblogging behavior can have an important application in the form of detecting events. However, the Twitter data that is available has limitations in it has incomplete and noisy information and has irregular samples. In this paper we create a model, calledTwitter Behavior Agent-Based Model (TBAM)to simulate Twitter pattern and behavior using Agent-Based Modeling(ABM). The generated data can be used in place or to complement the real-world data and improve the accuracy of event detection. We confirm the validity of our model by comparing it with real data collected from Twitter
Address University of Pittsburgh; University of Pittsburgh; University of Pittsburgh
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes usa3@pitt.edu Approved no
Call Number ISCRAM @ idladmin @ Serial 2321
Share this record to Facebook
 

 
Author Anja Van Der Hulst; Rudy Boonekamp; Marc Van Den Homberg
Title Field-testing a comprehensive approach simulation model Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 575-584
Keywords Information systems; Ca simulations; Comprehensive approach; Humanitarian crisis; Learning effects; Perceived realisms; Serious gaming; Simulation; Simulation model; Computer simulation
Abstract This paper describes the field tests of a simulation based game aiming at raising awareness and creating a deeper understanding of the dynamics of the comprehensive approach (CA). The setting of this game is that of a failed state where an UN intervention takes place after massive conflict that requires a CA to stabilize the situation. That is, the civil and military actors need to collaborate effectively, taking into account their respective strengths, mandates and roles. Underlying the game is the Go4it CA simulation Model (GCAM2.0). GCAM2.0 was extensively field-tested in eight sessions with about 16 persons each, aiming at assessment of the perceived realism and learning effects. It was found to provide a sufficiently authentic experience to obtain awareness of the CA in novices. With regard to improving the deeper understanding of the dynamics and complexity of the CA, in a cooperation-oriented setting only deeper learning can be reached.
Address TNO, Netherlands
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Serious Games for Crisis Management Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1040
Share this record to Facebook
 

 
Author Kui Wang; Jose Marti; Ming Bai; K.D. Srivastava
Title Optimal decision maker algorithm for disaster response management with I2Sim applications Type Conference Article
Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012
Volume Issue Pages
Keywords Algorithms; Computer software; Disasters; Emergency services; Information systems; Lagrange multipliers; Optimization; Human-readable; I2Sim toolbox; Infrastructure interdependencies; Infrastructure resources; Infrastructures interdependencies; Optimization algorithms; Software simulation; University of British Columbia; Decision making
Abstract Disaster response management has become an important area of research in recent years, with authorities spending more resources in the area. Infrastructure resource interdependencies are key critical points for a system to operate optimally. After a disaster occurs, infrastructures would have sustained certain degrees of damage, the allocation of limited resources to maximize human survival becomes a top priority. The I2Sim (Infrastructures Interdependencies Simulator) research group at the University of British Columbia (UBC) has developed a software simulation toolbox to help authorities plan for disaster responses. This paper presents an optimization decision algorithm based on Lagrange multipliers, which provides the theoretical basis for I2Sim software decision maker layer. There is a simple scenario of three hospitals constructed with the I2Sim toolbox to illustrate the interdependencies of water and electricity. © 2012 ISCRAM.
Address
Corporate Author Thesis
Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780864913326 Medium
Track Track Decision Support Methods for Complex Crises Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 235
Share this record to Facebook
 

 
Author Felix Wex; Guido Schryen; Dirk Neumann
Title Intelligent decision support for centralized coordination during Emergency Response Type Conference Article
Year 2011 Publication 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 Abbreviated Journal ISCRAM 2011
Volume Issue Pages
Keywords Information systems; Intelligent systems; Optimization; Resource allocation; Allocation mechanism; Comparative analysis; Coordination; Distributed resource allocation; Emergency operations centers; Emergency response systems; Intelligent decision support; Monte-Carlo simulations; Decision support systems
Abstract Automated coordination is regarded as a novel approaches in Emergency Response Systems (ERS), and especially resource allocation has been understudied in former research. The contribution of this paper is the introduction of two variants of a novel resource allocation mechanism that provide decision support to the centralized Emergency Operations Center (EOC). Two quantitative models are computationally validated using real-time, data-driven, Monte-Carlo simulations promoting reliable propositions of distributed resource allocations and schedules. Various requirements are derived through a literature analysis. Comparative analyses attest that the Monte-Carlo approach outperforms a well-defined benchmark.
Address Albert-Ludwigs-Universität Freiburg, Germany; Universität Regensburg, Germany
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Lisbon Editor M.A. Santos, L. Sousa, E. Portela
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789724922478 Medium
Track Intelligent Systems Expedition Conference 8th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1077
Share this record to Facebook
 

 
Author Gerhard Wickler; Austin Tate; Stephen Potter
Title Integrating discrete event and process-level simulation for flexible training in the I-X framework Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 355-359
Keywords Discrete event simulation; Information systems; Personnel training; Activity modeling; Agent Framework; Discrete-event simulators; Emergency response; Flexible trainings; Fully integrated; HTN planning; Training scenario; Emergency services
Abstract The aim of this paper is to describe I-Sim, a simulation tool that is a fully integrated part of the underlying agent framework, I-X. I-Sim controls a discrete event simulator, based on the same activity model that is shared between all I-X components, and multiple process-level simulators that model the continuous change caused by actions that are considered as primitives by the rest of the system. The primary purpose of this tool is to support instructors during exercises that are used for training in emergency response. The main advantage the I-Sim tool gives the instructors is flexibility, allowing them to orchestrate and modify existing training scenarios on the fly, adapting them to trainees' needs as required.
Address AIAI, University of Edinburgh, United Kingdom
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track ASCM Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1086
Share this record to Facebook
 

 
Author Gerhard Wickler; George Beckett; Liangxiu Han; Sung Han Koo; Stephen Potter; Gavin Pringle; Austin Tate
Title Using simulation for decision support: Lessons learned from FireGrid Type Conference Article
Year 2009 Publication ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives Abbreviated Journal ISCRAM 2009
Volume Issue Pages
Keywords Data acquisition; Information systems; Decision supports; Emergency responders; High-performance computing; Model-based simulations; Sensor data; Time simulations; Decision support systems
Abstract This paper describes some of the lessons learned from the FireGrid project. It starts with a brief overview of the project. The discussion of the lessons learned that follows is intended for others attempting to develop a similar system, where sensor data is used to steer a super-real time simulation in order to generate predictions that will provide decision support for emergency responders.
Address Artificial Intelligence Applications Institute, University of Edinburgh, United Kingdom; EPCC, University of Edinburgh, United Kingdom; NeSC, University of Edinburgh, United Kingdom; SEE, University of Edinburgh, United Kingdom; AIAI, University of Edinburgh, United Kingdom
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Gothenburg Editor J. Landgren, S. Jul
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789163347153 Medium
Track Intelligent Systems Expedition Conference 6th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1087
Share this record to Facebook
 

 
Author Timothy E Wright; Greg Madey
Title A prototype virtual emergency operations center using a collaborative virtual environment Type Conference Article
Year 2008 Publication Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2008
Volume Issue Pages 71-82
Keywords Information systems; Risk management; Virtual addresses; Collaborative virtual environment; Croquet; Desktop virtual reality; Emergency management; Emergency operations centers; Simulation; Virtual reality
Abstract In the realm of emergency operations, planning and training is a critical ingredient for success. The use of virtual environments can offer a convenient means of practicing and simulating activities in an emergency operations center (EOC). Although many virtual environments strive to offer realism in their simulations of weather, population, and incident happenings, they often fall short in terms of collaboration among simulation participants: unless participants are at the same physical location, their ability to see and interact with one and other is limited. Moreover, interactivity that is possible may not be truly synchronous (e.g., network lag can cause activities to happen out of order). These are compelling drawbacks to computer-based EOC simulators/trainers, since collaboration is a cornerstone for successful EOC teams. To address these problems, we present the virtual EOC. Our prototype aims to provide a collaborative virtual environment that enables interactivity among participants while executing synchronous, script-driven tests and simulations.
Address University of Notre Dame, United States
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Washington, DC Editor F. Fiedrich, B. Van de Walle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780615206974 Medium
Track Virtual Systems for Emergency Management Simulation & Training Expedition Conference 5th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1099
Share this record to Facebook