|   | 
Details
   web
Records
Author Theresa I. Jefferson; John R. Harrald
Title Estimating the impacts associated with the detonation of an improvised nuclear device Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 80-84
Keywords Disasters; Information systems; Radiation protection; Urban planning; Building structure; Computer based tools; Improvised nuclear devices; Man-made disasters; Planning process; Preparedness; Response capability; Scale and scope; Detonation
Abstract The explosion of an improvised nuclear device (IND), in any American city, would cause devastating physical and social impacts. These impacts would exceed the response capabilities of any city, state or region. The potential loss and suffering caused by an IND detonation can be dramatically reduced through informed planning and preparedness. By incorporating estimates of the impacts associated with the detonation of an IND into the planning process, jurisdictions can estimate the scale and scope of their response requirements. A prototype, computer-based tool was developed to quantify the human impacts associated with an IND detonation. Using various types of information such as the approximation of the prompt radiation footprint, blast footprint, and thermal footprint of the detonation, along with an estimation of the level of protection provided by building structures the system calculates the number and type of injuries that can be expected in a monocentric urban area.
Address Loyola University Maryland, United States; Virginia Polytechnic Institute, State University, United States
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Analytic Modeling and Simulation Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 624
Share this record to Facebook
 

 
Author Magnus Jändel; Sinna Lindquist; Linus Luotsinen
Title Social coverage maps Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 241-250
Keywords Flow visualization; Information systems; Urban planning; Visualization; Command and control; Crisis management; Emergency planning; Human behaviours; Radioactive contamination; Social simulations; Visual representations; Wireless services; Electronic warfare
Abstract This paper introduces Social Coverage Maps (SCM) as a visual representation of the societal impact of localized disruptions in urban areas. Incited by the recent deliberate interruption of wireless services for the purpose of crowd control in San Francisco, we focus on the use of SCMs for representing emergent effects of electronic warfare. As a prequel we discuss maps and other visualizations as representations of human behaviour and relations. The SCM concept is defined and grounded in simulation-based parameters. Using an experimental scenario based on cell phone jamming in a city we show how SCMs are generated using an agent-based population simulator. We find that Social Coverage Maps could become a useful tool for analysing emergent effects of actions and events including electronic warfare, roadblocks, smoke, teargas, chemical and radioactive contamination with applications in operational and emergency planning as well as crisis management.
Address Swedish Defence Research Agency, Sweden
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Decision Support Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 618
Share this record to Facebook
 

 
Author Kishimoto, M.; Osaragi, T.; Chan Yili
Title Evaluation of Improvement Projects in Densely Built-Up Area using a Large Earthquake Disaster Simulator: A case study in Kyojima Area, Tokyo Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 546-564
Keywords Urban Planning; Policy-Making; Large Earthquake; Disaster Mitigation; Improvement Project; simulation
Abstract This paper aims to (1) evaluate the disaster mitigation effects of improvement projects in a certain area and (2) provide a basis for strategic planning to promote further improvements. Specifically, we decompose local improvements in the analyzed area into multiple scenarios and examine their effects and issues. First, we describe the “large earthquake disaster simulator,” which estimates property damage and human casualties in a large earthquake. Then, the Kyojima area of Sumida-Ku, Tokyo, is selected as the analyzed area. We decompose the improvement projects implemented during 2006 – 2016 and prepare six scenarios. Finally, a simulation analysis is conducted. We demonstrate that fire spread could be effectively blocked by (1) ensuring sufficient road width and (2) identifying the critical buildings in terms of fire spread mitigation and making them fireproof.
Address Tokyo Institution of Technology
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference
Notes http://dx.doi.org/10.59297/HGYM8610 Approved no
Call Number ISCRAM @ idladmin @ Serial 2546
Share this record to Facebook
 

 
Author P. Lin; S.M. Lo
Title The application of quickest flow problem in urban evacuation planning Type Conference Article
Year 2005 Publication Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2005
Volume Issue Pages 129-130
Keywords Geographic information systems; Information systems; Optimization; Analysis and evaluation; Evacuation planning; Evacuation plans; Evacuation routes; Flow problems; Optimization modeling; Time varying; Urban evacuation; Urban planning
Abstract The provision of evacuation plan for people living in populated urban area is necessary to reduce the possible casualties under disasters. Time-varying quickest flow problem (TVQFP), which can simultaneously optimize the evacuation schedule, evacuation locations and evacuation routes, is adopted to optimize the evacuation planning of a city to minimize the clearance time of residents in danger. The integration of optimization model with GIS environment enables emergency managers to easily identify possible bottlenecks and to observe evacuation patterns in vivid pictures for further analysis and evaluation.
Address Department of Building and Construction, City University of Hong Kong, Hong Kong
Corporate Author Thesis
Publisher Royal Flemish Academy of Belgium Place of Publication Brussels Editor B. Van de Walle, B. Carle
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9076971099 Medium
Track POSTER SESSION Expedition Conference 2nd International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 704
Share this record to Facebook