toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Zijun Long; Richard McCreadie pdf  isbn
openurl 
  Title Is Multi-Modal Data Key for Crisis Content Categorization on Social Media? Type Conference Article
  Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022  
  Volume Issue Pages 1068-1080  
  Keywords Social Media Classification; Multi-modal Learning; Crisis Management; Deep Learning, BERT; Supervised Learning  
  Abstract The user-base of social media platforms, like Twitter, has grown dramatically around the world over the last decade. As people post everything they experience on social media, large volumes of valuable multimedia content are being recorded online, which can be analysed to help for a range of tasks. Here we specifically focus on crisis response. The majority of prior works in this space focus on using machine learning to categorize single-modality content (e.g. text of the posts, or images shared), with few works jointly utilizing multiple modalities. Hence, in this paper, we examine to what extent integrating multiple modalities is important for crisis content categorization. In particular, we design a pipeline for multi-modal learning that fuses textual and visual inputs, leverages both, and then classifies that content based on the specified task. Through evaluation using the CrisisMMD dataset, we demonstrate that effective automatic labelling for this task is possible, with an average of 88.31% F1 performance across two significant tasks (relevance and humanitarian category classification). while also analysing cases that unimodal models and multi-modal models success and fail.  
  Address University of Glasgow; University of Glasgow  
  Corporate Author Thesis  
  Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium  
  Track Social Media for Crisis Management Expedition Conference  
  Notes Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2472  
Share this record to Facebook
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: