Fahem Kebair, & Frédéric Serin. (2008). Towards an intelligent system for risk prevention and emergency management. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 526–535). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Making a decision in a changeable and dynamic environment is an arduous task owing to the lack of information, their uncertainties and the unawareness of planners about the future evolution of incidents. The use of a decision support system is an efficient solution for this issue. Such a system can help emergency planners and responders to detect possible emergencies, as well as to suggest and evaluate possible courses of action to deal with the emergency. We are interested in our work to the modelling of a monitoring preventive and emergency management system, wherein we stress the generic aspect. In this paper we propose an agent-based architecture of this system and we describe a first step of our approach which is the modeling of information and their representation using a multiagent system.
|
Ola Leifler. (2008). Combining technical and human-centered strategies for decision support in command and control: The ComPlan approach. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 504–515). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: ComPlan (A Combined, Collaborative Command and Control Planning tool) is an approach to providing knowledge-based decision support in the context of command and control. It combines technical research on automated planning tools with human-centered research on mission planning. At its core, ComPlan uses interconnected views of a planning situation to present and manipulate aspects of a scenario. By using domain knowledge flexibly, it presents immediate and directly visible feedback on constraint violations of a plan, facilitates mental simulation of events, and provides support for synchronization of concurrently working mission planners. The conceptual framework of ComPlan is grounded on three main principles from human-centered research on command and control: transparency, graceful regulation, and event-based feedback. As a result, ComPlan provides a model for applying a human-centered perspective on plan authoring tools for command and control, and a demonstration for how to apply that model in an integrated plan-authoring environment.
|
Stephen Potter, & Gerhard Wickler. (2008). Model-based query systems for emergency response. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 495–503). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In this paper we describe the approach adopted and experiences gained during a project to develop a general architecture that aims to harness advanced sensor, modelling and Grid technologies to assist emergency responders in tackling emergencies (specifically fire emergencies). Here we focus on the command and control aspects of this architecture, and in particular, on a query-based approach that has been adopted to allow end users to interact with available models of physical and other phenomena. The development of this has provided a number of insights about the use of such models, which along with the approach itself, should be of interest to any considering similar applications.
|
Alexander Smirnov, Nikolay Shilov, Tatiana Levashova, & Alexey Kashevnik. (2008). Web-service network for disaster management. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 516–525). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: The paper addresses the issue of context-aware operational decision support in emergency situations. A decision support system (DSS) developed for this purpose is implemented as a network of a set of Web-services. The Web-services try to organise a service network according to context. Here the context is proposed to be modelled as a “problem model”. It specifies problems to be solved in a particular kind of emergency situation. Context is produced based on the knowledge extracted from the application domain (application ontology) and formalised by a set of constraints. The purpose of the service network is provision the DSS with contextualised information from diverse information sources and solving problems specified in the context. In the framework of context-aware operational decision support, composition of the application ontology for the disaster management domain from the Semantic Web Ontologies is discussed and a hybrid technology of context-aware operational decision support is presented. The technology is based on ontology management, context management, constraint satisfaction, and Web Services. Application of the ideas above is illustrated by an example of a decision support system for real-time resource coordination and situation awareness for logistics management in fire response operations.
|