|
Guido Bruinsma, & Robert De Hoog. (2006). Exploring protocols for multidisciplinary disaster response using adaptive workflow simulation. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 53–65). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: The unique and dynamic changing nature in which a disaster unfolds forces emergency personnel involved with the mitigation process to be greatly flexible in their implementation of protocols. In past disasters the incapability of the disaster organization to swiftly adjust the workflow to the changing circumstances, has resulted in unnecessary delays and errors in mitigation. Addressing this issue, we propose and demonstrate a method for simulating disasters for work and protocol optimization in disasters response (TAID), based on the BRAHMS multi-agent modeling and simulation language. Our hypothesis is that this low fidelity simulation environment can effectively simulate work practice in dynamic environments to rearrange workflow and protocols. The results from an initial test simulation of the Hercules disaster at Eindhoven airport in the Netherlands look promising for future and broader application of our disaster simulation method.
|
|
|
Tung Bui, & Siva Sankaran. (2006). Foundations for designing global emergency response systems (ERS). In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 72–81). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: Works on Emergency Response Systems (ERS) tend to set aside-or discuss peripherally-the global nature of catastrophes and the unique conditions under which these systems have to operate. Major disasters either affect more than one country or require the help of more than one nation. Designing ERS to manage global crisis situations pose great challenges due to incompatible technologies, language and cultural differences, variations in knowledge-level and management styles of decision makers, and resource limitations in individual countries. In this paper, we outline theoretical foundations for designing global ERS. We develop a path model that identifies the elements and their interactions needed to ensure quality of outcomes and processes of emergency response. We also prescribe a Global Information Network (GIN) architecture to provide decision-makers with timely response to crises involving global intervention.
|
|
|
Hans Zimmermann. (2006). Availability of technologies versus capabilities of users. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 66–71). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: The regulatory environment is no longer the primary hindrance to the full application of telecommunications technology in the service of emergency response, disaster prevention and relief, and crisis management. Nowadays the restricting factor is the lack of knowledge about the capabilities, but also the limitations, of the multitude of specialized and of public communication systems. This paper will analyze the situation with the help of some practical examples and will recommend an interdisciplinary multi-stakeholder based approach to an educational concept for emergency and disaster telecommunications.
|
|