Ahmed Alnuhayt, Suvodeep Mazumdar, Vitaveska Lanfranchi, & Frank Hopfgartner. (2022). Understanding Reactions to Misinformation – A Covid-19 Perspective. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 687–700). Tarbes, France.
Abstract: The increasing use of social media as an information source brings further challenges – social media platforms can be an excellent medium for disseminating public awareness and critical information, that can be shared across large populations. However, misinformation in social media can have immense implications on public health, risking the effectiveness of health interventions as well as lives. This has been particularly true in the case of COVID-19 pandemic, with a range of misinformation, conspiracy theories and propaganda being spread across social channels. In our study, through a questionnaire survey, we set out to understand how members of the public interact with different sources when looking for information on COVID-19. We explored how participants react when they encounter information they believe to be misinformation. Through a set of three behaviour tasks, synthetic misinformation posts were provided to the participants who chose how they would react to them. In this work in progress study, we present initial findings and insights into our analysis of the data collected. We highlight what are the most common reactions to misinformation and also how these reactions are different based on the type of misinformation.
|
Carlo Alberto Bono, Barbara Pernici, Jose Luis Fernandez-Marquez, Amudha Ravi Shankar, Mehmet Oguz Mülâyim, & Edoardo Nemni. (2022). TriggerCit: Early Flood Alerting using Twitter and Geolocation – A Comparison with Alternative Sources. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 674–686). Tarbes, France.
Abstract: Rapid impact assessment in the immediate aftermath of a natural disaster is essential to provide adequate information to international organisations, local authorities, and first responders. Social media can support emergency response with evidence-based content posted by citizens and organisations during ongoing events. In the paper, we propose TriggerCit: an early flood alerting tool with a multilanguage approach focused on timeliness and geolocation. The paper focuses on assessing the reliability of the approach as a triggering system, comparing it with alternative sources for alerts, and evaluating the quality and amount of complementary information gathered. Geolocated visual evidence extracted from Twitter by TriggerCit was analysed in two case studies on floods in Thailand and Nepal in 2021. The system respectively returned a large scale and a local scale alert, both in a timely manner and accompanied by a valid geographical description, while providing information complementary to existing disaster alert mechanisms.
|
Chauhan, A. (2023). Humor-Based COVID-19 Twitter Accounts. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 417–427). Omaha, USA: University of Nebraska at Omaha.
Abstract: Crisis Named Resources (or CNRs) are social media pages and accounts named after a crisis event. Using the COVID-19 Pandemic as a case study, we identified and examined the role of CNRs that shared humor on Twitter. Our analyses showed that humor-based CNRs shared virus-related rumors, stigma, safety measures, opinions, sarcasm, and news updates. These resources also shared the overall anger and frustration over the year 2020. We conclude by discussing the critical role of humor based CNRs in crisis response.
|
Cody Buntain, Richard Mccreadie, & Ian Soboroff. (2022). Incident Streams 2021 Off the Deep End: Deeper Annotations and Evaluations in Twitter. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 584–604). Tarbes, France.
Abstract: This paper summarizes the final year of the four-year Text REtrieval Conference Incident Streams track (TREC-IS), which has produced a large dataset comprising 136,263 annotated tweets, spanning 98 crisis events. Goals of this final year were twofold: 1) to add new categories for assessing messages, with a focus on characterizing the audience, author, and images associated with these messages, and 2) to enlarge the TREC-IS dataset with new events, with an emphasis of deeper pools for sampling. Beyond these two goals, TREC-IS has nearly doubled the number of annotated messages per event for the 26 crises introduced in 2021 and has released a new parallel dataset of 312,546 images associated with crisis content – with 7,297 tweets having annotations about their embedded images. Our analyses of this new crisis data yields new insights about the context of a tweet; e.g., messages intended for a local audience and those that contain images of weather forecasts and infographics have higher than average assessments of priority but are relatively rare. Tweets containing images, however, have higher perceived priorities than tweets without images. Moving to deeper pools, while tending to lower classification performance, also does not generally impact performance rankings or alter distributions of information-types. We end this paper with a discussion of these datasets, analyses, their implications, and how they contribute both new data and insights to the broader crisis informatics community.
|
Cruz, J. A. dela, Hendrickx, I., & Larson, M. (2023). Towards XAI for Information Extraction on Online Media Data for Disaster Risk Management. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 478–486). Omaha, USA: University of Nebraska at Omaha.
Abstract: Disaster risk management practitioners have the responsibility to make decisions at every phase of the disaster risk management cycle: mitigation, preparedness, response and recovery. The decisions they make affect human life. In this paper, we consider the current state of the use of AI in information extraction (IE) for disaster risk management (DRM), which makes it possible to leverage disaster information in social media. We consolidate the challenges and concerns of using AI for DRM into three main areas: limitations of DRM data, limitations of AI modeling and DRM domain-specific concerns, i.e., bias, privacy and security, transparency and accountability, and hype and inflated expectations. Then, we present a systematic discussion of how explainable AI (XAI) can address the challenges and concerns of using AI for IE in DRM.
|
Dario Salza, Edoardo Arnaudo, Giacomo Blanco, & Claudio Rossi. (2022). A 'Glocal' Approach for Real-time Emergency Event Detection in Twitter. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 570–583). Tarbes, France.
Abstract: Social media like Twitter offer not only an unprecedented amount of user-generated content covering developing emergencies but also act as a collector of news produced by heterogeneous sources, including big and small media companies as well as public authorities. However, this volume, velocity, and variety of data constitute the main value and, at the same time, the key challenge to implement and automatic detection and tracking of independent emergency events from the real-time stream of tweets. Leveraging online clustering and considering both textual and geographical features, we propose, implement, and evaluate an algorithm to automatically detect emergency events applying a ‘glocal’ approach, i.e., offering a global coverage while detecting events at local (municipality level) scale.
|
Encarnación, T., & Wilks, C. R. (2023). Role of Expressed Emotions on the Retransmission of Help-Seeking Messages during Disasters. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 340–352). Omaha, USA: University of Nebraska at Omaha.
Abstract: Emergency managers rely on formal and informal communication channels to identify needs in post-disaster environments. Message retransmission is a critical factor to ensure that help-seekers are identified by disaster responders. This paper uses a novel annotated dataset of Twitter posts from four major disasters that impacted the United States in 2021, to quantify the effect that expressed emotions and support typology have on retransmission. Poisson regression models are estimated, and the results show that messages seeking instrumental support are more likely to be retransmitted. Expressions of anger, fear, and sadness increase overall retweets. Moreover, expressions of anger, anticipation, or sadness increase the likelihood of retransmission for messages that seek instrumental help.
|
Fatehkia, M., Imran, M., & Weber, I. (2023). Towards Real-time Remote Social Sensing via Targeted Advertising. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 396–406). Omaha, USA: University of Nebraska at Omaha.
Abstract: Social media serves as an important communication channel for people affected by crises, creating a data source for emergency responders wanting to improve situational awareness. In particular, social listening on Twitter has been widely used for real-time analysis of crisis-related messages. This approach, however, is often hindered by the small fraction of (hyper-)localized content and by the inability to explicitly ask affected populations about aspects with the most operational value. Here, we explore a new form of social media data collected through targeted poll ads on Facebook. Using geo-targeted ads during flood events in six countries, we show that it is possible to collect thousands of poll responses within hours of launching the ad campaign, and at a cost of a few (US dollar) cents per response. We believe that this flexible, fast, and affordable data collection can serve as a valuable complement to existing approaches.
|
Gaëtan Caillaut, Cécile Gracianne, Nathalie Abadie, Guillaume Touya, & Samuel Auclair. (2022). Automated Construction of a French Entity Linking Dataset to Geolocate Social Network Posts in the Context of Natural Disasters. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 654–663). Tarbes, France.
Abstract: During natural disasters, automatic information extraction from Twitter posts is a valuable way to get a better overview of the field situation. This information has to be geolocated to support effective actions, but for the vast majority of tweets, spatial information has to be extracted from texts content. Despite the remarkable advances of the Natural Language Processing field, this task is still challenging for current state-of-the-art models because they are not necessarily trained on Twitter data and because high quality annotated data are still lacking for low resources languages. This research in progress address this gap describing an analytic pipeline able to automatically extract geolocatable entities from texts and to annotate them by aligning them with the entities present in Wikipedia/Wikidata resources. We present a new dataset for Entity Linking on French texts as preliminary results, and discuss research perspectives for enhancements over current state-of-the-art modeling for this task.
|
Hafiz Budi Firmansyah, Jesus Cerquides, & Jose Luis Fernandez-Marquez. (2022). Ensemble Learning for the Classification of Social Media Data in Disaster Response. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 710–718). Tarbes, France.
Abstract: Social media generates large amounts of almost real-time data which has proven valuable in disaster response. Specially for providing information within the first 48 hours after a disaster occurs. However, this potential is poorly exploited in operational environments due to the challenges of curating social media data. This work builds on top of the latest research on automatic classification of social media content, proposing the use of ensemble learning to help in the classification of social media images for disaster response. Ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Experimental results show that ensemble learning is a valuable technology for the analysis of social media images for disaster response,and could potentially ease the integration of social media data within an operational environment.
|
Herrera, L. C., & Gjøsæter, T. (2023). Leveraging Crisis Informatics Experts: A co-creating approach for validation of social media research insights. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 439–448). Omaha, USA: University of Nebraska at Omaha.
Abstract: Validation of findings is a challenge in practice-based research. While analysis is being conducted and findings are being constructed out of data collected in a defined period, practitioners continue with their activities. This issue is exacerbated in the field of crisis management, where high volatility and personnel turnover make the capacity to attend research demands scarce. Therefore, conducting classic member validation is logistically challenging for the researcher. The need for rigor and validity calls for alternative mechanisms to fulfill requirements for academic research. This article presents an approach for validation of results of a qualitative study with public organizations that use social media as a source of information in the context of crisis management. The unavailability of original interview-objects to validate our findings resulted in an alternative validation method that leveraged experts in crisis informatics. By presenting our approach, we contribute to encouraging rigor in qualitative research while maintaining the relationship between practice and academia.
|
Jens Kersten, Jan Bongard, & Friederike Klan. (2022). Gaussian Processes for One-class and Binary Classification of Crisis-related Tweets. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 664–673). Tarbes, France.
Abstract: Overload reduction is essential to exploit Twitter text data for crisis management. Often used pre-trained machine learning models require training data for both, crisis-related and off-topic content. However, this task can also be formulated as a one-class classification problem in which labeled off-topic samples are not required. Gaussian processes (GPs) have great potential in both, binary and one-class settings and are therefore investigated in this work. Deep kernel learning combines the representative power of text embeddings with the Bayesian formalism of GPs. Motivated by this, we investigate the potential of deep kernel models for the task of classifying crisis-related tweet texts with special emphasis on cross-event applications. Compared to standard binary neural networks, first experiments with one-class GP models reveal a great potential for realistic scenarios, offering a fast and flexible approach for interactive model training without requiring off-topic training samples and comprehensive expert knowledge (only two model parameters involved).
|
Kiran Zahra, Rahul Deb Das, Frank O. Ostermann, & Ross S. Purves. (2022). Towards an Automated Information Extraction Model from Twitter Threads during Disasters. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 637–653). Tarbes, France.
Abstract: Social media plays a vital role as a communication source during large-scale disasters. The unstructured and informal nature of such short individual posts makes it difficult to extract useful information, often due to a lack of additional context. The potential of social media threads– sequences of posts– has not been explored as a source of adding context and more information to the initiating post. In this research, we explored Twitter threads as an information source and developed an information extraction model capable of extracting relevant information from threads posted during disasters. We used a crowdsourcing platform to determine whether a thread adds more information to the initial tweet and defined disaster-related information present in these threads into six themes– event reporting, location, time, intensity, casualty and damage reports, and help calls. For these themes, we created the respective thematic lexicons from WordNet. Moreover, we developed and compared four information extraction models trained on GloVe, word2vec, bag-of-words, and thematic bag-of-words to extract and summarize the most critical information from the threads. Our results reveal that 70 percent of all threads add information to the initiating post for various disaster-related themes. Furthermore, the thematic bag-of-words information extraction model outperforms the other algorithms and models for preserving the highest number of disaster-related themes.
|
Lamsal, R., Read, M. R., & Karunasekera, S. (2023). A Twitter narrative of the COVID-19 pandemic in Australia. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 353–370). Omaha, USA: University of Nebraska at Omaha.
Abstract: Social media platforms contain abundant data that can provide comprehensive knowledge of historical and real-time events. During crisis events, the use of social media peaks, as people discuss what they have seen, heard, or felt. Previous studies confirm the usefulness of such socially generated discussions for the public, first responders, and decision-makers to gain a better understanding of events as they unfold at the ground level. This study performs an extensive analysis of COVID-19-related Twitter discussions generated in Australia between January 2020, and October 2022. We explore the Australian Twitterverse by employing state-of-the-art approaches from both supervised and unsupervised domains to perform network analysis, topic modeling, sentiment analysis, and causality analysis. As the presented results provide a comprehensive understanding of the Australian Twitterverse during the COVID-19 pandemic, this study aims to explore the discussion dynamics to aid the development of future automated information systems for epidemic/pandemic management.
|
Long, Z., McCreadiem, R., & Imran, M. (2023). CrisisViT: A Robust Vision Transformer for Crisis Image Classification. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 309–319). Omaha, USA: University of Nebraska at Omaha.
Abstract: In times of emergency, crisis response agencies need to quickly and accurately assess the situation on the ground in order to deploy relevant services and resources. However, authorities often have to make decisions based on limited information, as data on affected regions can be scarce until local response services can provide first-hand reports. Fortunately, the widespread availability of smartphones with high-quality cameras has made citizen journalism through social media a valuable source of information for crisis responders. However, analyzing the large volume of images posted by citizens requires more time and effort than is typically available. To address this issue, this paper proposes the use of state-of-the-art deep neural models for automatic image classification/tagging, specifically by adapting transformer-based architectures for crisis image classification (CrisisViT). We leverage the new Incidents1M crisis image dataset to develop a range of new transformer-based image classification models. Through experimentation over the standard Crisis image benchmark dataset, we demonstrate that the CrisisViT models significantly outperform previous approaches in emergency type, image relevance, humanitarian category, and damage severity classification. Additionally, we show that the new Incidents1M dataset can further augment the CrisisViT models resulting in an additional 1.25% absolute accuracy gain.
|
McCreadie, R., & Buntain, C. (2023). CrisisFACTS: Buidling and Evaluating Crisis Timelines. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 320–339). Omaha, USA: University of Nebraska at Omaha.
Abstract: Between 2018 and 2021, the Incident Streams track (TREC-IS) developed standard approaches for classifying information types and criticality of tweets during crises. While successful in producing substantial collections of labeled data, TREC-IS as a data challenge had several limitations: It only evaluated information at type-level rather than what was reported; it only used Twitter data; and it lacked measures of redundancy in system output. This paper introduces Crisis Facts and Cross-Stream Temporal Summarization (CrisisFACTS), a new data challenge piloted in 2022 and developed to address these limitations. The CrisisFACTS framework recasts TREC-IS into an event-summarization task using multiple disaster-relevant data streams and a new fact-based evaluation scheme, allowing the community to assess state-of-the-art methods for summarizing disaster events Results from CrisisFACTS in 2022 include a new test-collection comprising human-generated disaster summaries along with multi-platform datasets of social media, crisis reports and news coverage for major crisis events.
|
Nils Bourgon, Benamara Farah, Alda Mari, Véronique Moriceau, Gaetan Chevalier, Laurent Leygue, et al. (2022). Are Sudden Crises Making me Collapse? Measuring Transfer Learning Performances on Urgency Detection. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 701–709). Tarbes, France.
Abstract: This paper aims at measuring transfer learning performances across different types of crises related to sudden or unexpected events (like earthquakes, terror attacks, explosions, technological incidents) that cannot be foreseen by emergency services and on the occurrence of which they have virtually no control. Although sudden crises are present in most existing crisis datasets, as far as we are aware, no one studied their impact on classifiers performances when evaluated in an out-of-type scenario in which models are tested on a particular type of crisis unseen during training. Our contribution is threefold: (1) A new dataset of about 3,800 French tweets related to four sudden events that occurred in France annotated for both relatedness (i.e., useful vs. not useful for emergency responders) and urgency (i.e., not useful vs. urgent vs. not urgent), (2) A set of monotask and multitask zero-shot learning experiments to transfer knowledge across events and types, and finally, (3) Experiments involving few-shot learning to measure the amount of sudden events instances needed during training to guarantee good performances. When compared to a cross-event setting, our preliminary results are encouraging and show that transfer from predictable ecological crisis to sudden events is feasible and constitutes a first step towards real-time crisis management systems from social media content.
|
Nurollahian, S., Talegaonkar, I., Bell, A. Z., & Kogan, M. (2023). Factors Affecting Public’s Engagement with Tweets by Authoritative Sources During Crisis. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 459–477). Omaha, USA: University of Nebraska at Omaha.
Abstract: People increasingly use social media at the time of crisis, which produces a social media data deluge, where the public may find it difficult to locate trustworthy and credible information. Therefore, they often turn to authoritative sources: official individuals and organizations who are trusted to provide reliable information. It is then imperative that their credible messages reach and engage the widest possible audience, especially among those affected. In this study, we explore the role of metadata and linguistic factors in facilitating three types of engagement — retweets, replies, and favorites— with posts by authoritative sources. We find that many factors are similarly important across models (popularity, sociability, activity). However, some features are salient for only a specific type of engagement. We conclude by providing guidance to authoritative sources on how they may optimize specific types of engagement: retweets for information propagation, replies for in-depth sense-making, and favorites for cross-purpose visibility.
|
Pereira, J., Fidalgo, R., Lotufo, R., & Nogueira, R. (2023). Crisis Event Social Media Summarization with GPT-3 and Neural Reranking. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 371–384). Omaha, USA: University of Nebraska at Omaha.
Abstract: Managing emergency events, such as natural disasters, requires management teams to have an up-to-date view of what is happening throughout the event. In this paper, we demonstrate how a method using a state-of-the-art open-sourced search engine and a large language model can generate accurate and comprehensive summaries by retrieving information from social media and online news sources. We evaluated our method on the TREC CrisisFACTS challenge dataset using automatic summarization metrics (e.g., Rouge-2 and BERTScore) and the manual evaluation performed by the challenge organizers. Our approach is the best in comprehensiveness despite presenting a high redundancy ratio in the generated summaries. In addition, since all pipeline components are few-shot, there is no need to collect training data, allowing us to deploy the system rapidly. Code is available at https://github.com/neuralmind-ai/visconde-crisis-summarization.
|
Pooneh Mousavi, & Cody Buntain. (2022). “Please Donate for the Affected”: Supporting Emergency Managers in Finding Volunteers and Donations in Twitter Across Disasters. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 605–622). Tarbes, France.
Abstract: Despite the outpouring of social support posted to social media channels in the aftermath of disaster, finding and managing content that can translate into community relief, donations, volunteering, or other recovery support is difficult due to the lack of sufficient annotated data around volunteerism. This paper outlines three experiments to alleviate these difficulties. First, we estimate to what degree volunteerism content from one crisis is transferable to another by evaluating the consistency of language in volunteer-and donation-related social media content across 78 disasters. Second it introduces methods for providing computational support in this emergency support function and developing semi-automated models for classifying volunteer-and donation-related social media content in new disaster events. Results show volunteer-and donation-related social media content is sufficiently similar across disasters and disaster types to warrant transferring models across disasters, and we evaluate simple resampling techniques for tuning these models. We then introduce and evaluate a weak-supervision approach to integrate domain knowledge from emergency response officers with machine learningmodelstoimproveclassification accuracy andacceleratethisemergencysupportinnewevents. This method helps to overcome the scarcity in data that we observe related to volunteer-and donation-related social media content.
|
Rode-Hasinger, S., Haberle, M., Racek, D., Kruspe, A., & Zhu Xiao Xiang. (2023). TweEvent: A dataset of Twitter messages about events in the Ukraine conflict. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 407–416). Omaha, USA: University of Nebraska at Omaha.
Abstract: Information about incidents within a conflict, e.g., shelling of an area of interest, is scattered amongst different data or media sources. For example, the ACLED dataset continuously documents local incidents recorded within the context of a specific conflict such as Russia’s war in Ukraine. However, these blocks of information might be incomplete. Therefore, it is useful to collect data from several sources to enrich the information pool of a certain incident. In this paper, we present a dataset of social media messages covering the same war events as those collected in the ACLED dataset. The information is extracted from automatically geocoded Twitter text data using state-of-the-art natural language processing methods based on large pre-trained language models (LMs). Our method can be applied to various textual data sources. Both the data as well as the approach can serve to help human analysts obtain a broader understanding of conflict events.
|
Shivam Sharma, & Cody Buntain. (2022). Bang for your Buck: Performance Impact Across Choices in Learning Architectures for Crisis Informatics. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 719–736). Tarbes, France.
Abstract: Over the years, with the increase in social media engagement, there has been an in increase in various pipelines to analyze, classify and prioritize crisis-related data on various social media platforms. These pipelines utilize various data augmentation methods to counter imbalanced crisis data, sophisticated and off-the-shelf models for training. However, there is a lack of comprehensive study which compares these methods for the various sections of a pipeline. In this study, we split a general crisis-related pipeline into 3 major sections, namely, data augmentation, model selection, and training methodology. We compare various methods for each of these sections and then present a comprehensive evaluation of which section to prioritize based on the results from various pipelines. We compare our results against two separate tasks, information classification and priority scoring for crisis-related tweets. Our results suggest that data augmentation, in general,improves the performance. However, sophisticated, state-of-the-art language models like DeBERTa only show performance gain in information classification tasks, and models like RoBERTa tend to show a consistent performance increase over our presented baseline consisting of BERT. We also show that, though training two separate task-specific BERT models does show better performance than one BERT model with multi-task learning methodology over an imbalanced dataset, multi-task learning does improve performance for more sophisticated model like DeBERTa with a much more balanced dataset after augmentation.
|
St. Denis, L. A., & Hughes, A. L. (2023). Use of Statistics in Disaster by Local Individuals: An Examination of Tweets during COVID-19. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 449–458). Omaha, USA: University of Nebraska at Omaha.
Abstract: We report on how individuals local to the US state of Colorado used statistics in tweets to make sense of the early stages of the COVID-19 pandemic. Tweets provided insight into how people interpreted statistical data, sometimes incorrectly, which has implications for crisis responders tasked with understanding public perceptions and providing accurate information. With widespread concerns about the accuracy and quality of online information, we show how monitoring public reactions to and uses of statistics on social media is important for improving crisis communication. Findings suggest that statistics can be a powerful tool for making sense of a crisis and coping with the stress and uncertainty of a global, rapidly evolving event like the COVID-19 pandemic. We conclude with broader implications for how crisis responders might improve their communications around statistics to the public, and suggestions for how this research might be expanded to look at other types of disasters.
|
Tasneem, F., Chakraborty, S., & Chy, A. N. (2023). An Early Synthesis of Deep Neural Networks to Identify Multimodal Informative Disaster Tweets. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 428–438). Omaha, USA: University of Nebraska at Omaha.
Abstract: Twitter is always worthwhile in facilitating communication during disasters. It helps in raising situational awareness and undertaking disaster control actions as quickly as possible to alleviate the miseries. But the noisy essence of Twitter causes difficulty in distinguishing relevant information from the heterogeneous contents. Therefore, extracting informative tweets is a substantial task to help in crisis intervention. Analyzing only the text or image content of the tweet often misses necessary insights which might be helpful during disasters. In this paper, we propose a multimodal framework to address the challenges of identifying informative crisis-related tweets containing both texts and images. Our presented approach incorporates an early fusion strategy of BERT-LSTM and ResNet50 networks which effectively learns from the joint representation of texts and images. The experiments and evaluation on the benchmark CrisisMMD dataset show that our fusion method surpasses the baseline by 7% and substantiates its potency over the unimodal systems.
|
Thomas Papadimos, Nick Pantelidis, Stelios Andreadis, Aristeidis Bozas, Ilias Gialampoukidis, Stefanos Vrochidis, et al. (2022). Real-time Alert Framework for Fire Incidents Using Multimodal Event Detection on Social Media Streams. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 623–635). Tarbes, France.
Abstract: The frequency of wildfires is growing day by day due to vastly climate changes. Forest fires can have a severe impact on human lives and the environment, which can be minimised if the population has early and accurate warning mechanisms. To date, social media are able to contribute to early warning with the additional, crowd-sourced information they can provide to the emergency response workers during a crisis event. Nevertheless, the detection of real-world fire incidents using social media data, while filtering out the unavoidable noise, remains a challenging task. In this paper, we present an alert framework for the real-time detection of fire events and we propose a novel multimodal event detection model, which fuses both probabilistic and graph methodologies and is evaluated on the largest fires in Spain during 2019.
|