Ahmed Alnuhayt, Suvodeep Mazumdar, Vitaveska Lanfranchi, & Frank Hopfgartner. (2022). Understanding Reactions to Misinformation – A Covid-19 Perspective. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 687–700). Tarbes, France.
Abstract: The increasing use of social media as an information source brings further challenges – social media platforms can be an excellent medium for disseminating public awareness and critical information, that can be shared across large populations. However, misinformation in social media can have immense implications on public health, risking the effectiveness of health interventions as well as lives. This has been particularly true in the case of COVID-19 pandemic, with a range of misinformation, conspiracy theories and propaganda being spread across social channels. In our study, through a questionnaire survey, we set out to understand how members of the public interact with different sources when looking for information on COVID-19. We explored how participants react when they encounter information they believe to be misinformation. Through a set of three behaviour tasks, synthetic misinformation posts were provided to the participants who chose how they would react to them. In this work in progress study, we present initial findings and insights into our analysis of the data collected. We highlight what are the most common reactions to misinformation and also how these reactions are different based on the type of misinformation.
|
Carlo Alberto Bono, Barbara Pernici, Jose Luis Fernandez-Marquez, Amudha Ravi Shankar, Mehmet Oguz Mülâyim, & Edoardo Nemni. (2022). TriggerCit: Early Flood Alerting using Twitter and Geolocation – A Comparison with Alternative Sources. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 674–686). Tarbes, France.
Abstract: Rapid impact assessment in the immediate aftermath of a natural disaster is essential to provide adequate information to international organisations, local authorities, and first responders. Social media can support emergency response with evidence-based content posted by citizens and organisations during ongoing events. In the paper, we propose TriggerCit: an early flood alerting tool with a multilanguage approach focused on timeliness and geolocation. The paper focuses on assessing the reliability of the approach as a triggering system, comparing it with alternative sources for alerts, and evaluating the quality and amount of complementary information gathered. Geolocated visual evidence extracted from Twitter by TriggerCit was analysed in two case studies on floods in Thailand and Nepal in 2021. The system respectively returned a large scale and a local scale alert, both in a timely manner and accompanied by a valid geographical description, while providing information complementary to existing disaster alert mechanisms.
|
Cody Buntain, Richard Mccreadie, & Ian Soboroff. (2022). Incident Streams 2021 Off the Deep End: Deeper Annotations and Evaluations in Twitter. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 584–604). Tarbes, France.
Abstract: This paper summarizes the final year of the four-year Text REtrieval Conference Incident Streams track (TREC-IS), which has produced a large dataset comprising 136,263 annotated tweets, spanning 98 crisis events. Goals of this final year were twofold: 1) to add new categories for assessing messages, with a focus on characterizing the audience, author, and images associated with these messages, and 2) to enlarge the TREC-IS dataset with new events, with an emphasis of deeper pools for sampling. Beyond these two goals, TREC-IS has nearly doubled the number of annotated messages per event for the 26 crises introduced in 2021 and has released a new parallel dataset of 312,546 images associated with crisis content – with 7,297 tweets having annotations about their embedded images. Our analyses of this new crisis data yields new insights about the context of a tweet; e.g., messages intended for a local audience and those that contain images of weather forecasts and infographics have higher than average assessments of priority but are relatively rare. Tweets containing images, however, have higher perceived priorities than tweets without images. Moving to deeper pools, while tending to lower classification performance, also does not generally impact performance rankings or alter distributions of information-types. We end this paper with a discussion of these datasets, analyses, their implications, and how they contribute both new data and insights to the broader crisis informatics community.
|
Dario Salza, Edoardo Arnaudo, Giacomo Blanco, & Claudio Rossi. (2022). A 'Glocal' Approach for Real-time Emergency Event Detection in Twitter. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 570–583). Tarbes, France.
Abstract: Social media like Twitter offer not only an unprecedented amount of user-generated content covering developing emergencies but also act as a collector of news produced by heterogeneous sources, including big and small media companies as well as public authorities. However, this volume, velocity, and variety of data constitute the main value and, at the same time, the key challenge to implement and automatic detection and tracking of independent emergency events from the real-time stream of tweets. Leveraging online clustering and considering both textual and geographical features, we propose, implement, and evaluate an algorithm to automatically detect emergency events applying a ‘glocal’ approach, i.e., offering a global coverage while detecting events at local (municipality level) scale.
|
Gaëtan Caillaut, Cécile Gracianne, Nathalie Abadie, Guillaume Touya, & Samuel Auclair. (2022). Automated Construction of a French Entity Linking Dataset to Geolocate Social Network Posts in the Context of Natural Disasters. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 654–663). Tarbes, France.
Abstract: During natural disasters, automatic information extraction from Twitter posts is a valuable way to get a better overview of the field situation. This information has to be geolocated to support effective actions, but for the vast majority of tweets, spatial information has to be extracted from texts content. Despite the remarkable advances of the Natural Language Processing field, this task is still challenging for current state-of-the-art models because they are not necessarily trained on Twitter data and because high quality annotated data are still lacking for low resources languages. This research in progress address this gap describing an analytic pipeline able to automatically extract geolocatable entities from texts and to annotate them by aligning them with the entities present in Wikipedia/Wikidata resources. We present a new dataset for Entity Linking on French texts as preliminary results, and discuss research perspectives for enhancements over current state-of-the-art modeling for this task.
|
Hafiz Budi Firmansyah, Jesus Cerquides, & Jose Luis Fernandez-Marquez. (2022). Ensemble Learning for the Classification of Social Media Data in Disaster Response. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 710–718). Tarbes, France.
Abstract: Social media generates large amounts of almost real-time data which has proven valuable in disaster response. Specially for providing information within the first 48 hours after a disaster occurs. However, this potential is poorly exploited in operational environments due to the challenges of curating social media data. This work builds on top of the latest research on automatic classification of social media content, proposing the use of ensemble learning to help in the classification of social media images for disaster response. Ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Experimental results show that ensemble learning is a valuable technology for the analysis of social media images for disaster response,and could potentially ease the integration of social media data within an operational environment.
|
Jens Kersten, Jan Bongard, & Friederike Klan. (2022). Gaussian Processes for One-class and Binary Classification of Crisis-related Tweets. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 664–673). Tarbes, France.
Abstract: Overload reduction is essential to exploit Twitter text data for crisis management. Often used pre-trained machine learning models require training data for both, crisis-related and off-topic content. However, this task can also be formulated as a one-class classification problem in which labeled off-topic samples are not required. Gaussian processes (GPs) have great potential in both, binary and one-class settings and are therefore investigated in this work. Deep kernel learning combines the representative power of text embeddings with the Bayesian formalism of GPs. Motivated by this, we investigate the potential of deep kernel models for the task of classifying crisis-related tweet texts with special emphasis on cross-event applications. Compared to standard binary neural networks, first experiments with one-class GP models reveal a great potential for realistic scenarios, offering a fast and flexible approach for interactive model training without requiring off-topic training samples and comprehensive expert knowledge (only two model parameters involved).
|
Kiran Zahra, Rahul Deb Das, Frank O. Ostermann, & Ross S. Purves. (2022). Towards an Automated Information Extraction Model from Twitter Threads during Disasters. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 637–653). Tarbes, France.
Abstract: Social media plays a vital role as a communication source during large-scale disasters. The unstructured and informal nature of such short individual posts makes it difficult to extract useful information, often due to a lack of additional context. The potential of social media threads– sequences of posts– has not been explored as a source of adding context and more information to the initiating post. In this research, we explored Twitter threads as an information source and developed an information extraction model capable of extracting relevant information from threads posted during disasters. We used a crowdsourcing platform to determine whether a thread adds more information to the initial tweet and defined disaster-related information present in these threads into six themes– event reporting, location, time, intensity, casualty and damage reports, and help calls. For these themes, we created the respective thematic lexicons from WordNet. Moreover, we developed and compared four information extraction models trained on GloVe, word2vec, bag-of-words, and thematic bag-of-words to extract and summarize the most critical information from the threads. Our results reveal that 70 percent of all threads add information to the initiating post for various disaster-related themes. Furthermore, the thematic bag-of-words information extraction model outperforms the other algorithms and models for preserving the highest number of disaster-related themes.
|
Nils Bourgon, Benamara Farah, Alda Mari, Véronique Moriceau, Gaetan Chevalier, Laurent Leygue, et al. (2022). Are Sudden Crises Making me Collapse? Measuring Transfer Learning Performances on Urgency Detection. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 701–709). Tarbes, France.
Abstract: This paper aims at measuring transfer learning performances across different types of crises related to sudden or unexpected events (like earthquakes, terror attacks, explosions, technological incidents) that cannot be foreseen by emergency services and on the occurrence of which they have virtually no control. Although sudden crises are present in most existing crisis datasets, as far as we are aware, no one studied their impact on classifiers performances when evaluated in an out-of-type scenario in which models are tested on a particular type of crisis unseen during training. Our contribution is threefold: (1) A new dataset of about 3,800 French tweets related to four sudden events that occurred in France annotated for both relatedness (i.e., useful vs. not useful for emergency responders) and urgency (i.e., not useful vs. urgent vs. not urgent), (2) A set of monotask and multitask zero-shot learning experiments to transfer knowledge across events and types, and finally, (3) Experiments involving few-shot learning to measure the amount of sudden events instances needed during training to guarantee good performances. When compared to a cross-event setting, our preliminary results are encouraging and show that transfer from predictable ecological crisis to sudden events is feasible and constitutes a first step towards real-time crisis management systems from social media content.
|
Pooneh Mousavi, & Cody Buntain. (2022). “Please Donate for the Affected”: Supporting Emergency Managers in Finding Volunteers and Donations in Twitter Across Disasters. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 605–622). Tarbes, France.
Abstract: Despite the outpouring of social support posted to social media channels in the aftermath of disaster, finding and managing content that can translate into community relief, donations, volunteering, or other recovery support is difficult due to the lack of sufficient annotated data around volunteerism. This paper outlines three experiments to alleviate these difficulties. First, we estimate to what degree volunteerism content from one crisis is transferable to another by evaluating the consistency of language in volunteer-and donation-related social media content across 78 disasters. Second it introduces methods for providing computational support in this emergency support function and developing semi-automated models for classifying volunteer-and donation-related social media content in new disaster events. Results show volunteer-and donation-related social media content is sufficiently similar across disasters and disaster types to warrant transferring models across disasters, and we evaluate simple resampling techniques for tuning these models. We then introduce and evaluate a weak-supervision approach to integrate domain knowledge from emergency response officers with machine learningmodelstoimproveclassification accuracy andacceleratethisemergencysupportinnewevents. This method helps to overcome the scarcity in data that we observe related to volunteer-and donation-related social media content.
|
Shivam Sharma, & Cody Buntain. (2022). Bang for your Buck: Performance Impact Across Choices in Learning Architectures for Crisis Informatics. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 719–736). Tarbes, France.
Abstract: Over the years, with the increase in social media engagement, there has been an in increase in various pipelines to analyze, classify and prioritize crisis-related data on various social media platforms. These pipelines utilize various data augmentation methods to counter imbalanced crisis data, sophisticated and off-the-shelf models for training. However, there is a lack of comprehensive study which compares these methods for the various sections of a pipeline. In this study, we split a general crisis-related pipeline into 3 major sections, namely, data augmentation, model selection, and training methodology. We compare various methods for each of these sections and then present a comprehensive evaluation of which section to prioritize based on the results from various pipelines. We compare our results against two separate tasks, information classification and priority scoring for crisis-related tweets. Our results suggest that data augmentation, in general,improves the performance. However, sophisticated, state-of-the-art language models like DeBERTa only show performance gain in information classification tasks, and models like RoBERTa tend to show a consistent performance increase over our presented baseline consisting of BERT. We also show that, though training two separate task-specific BERT models does show better performance than one BERT model with multi-task learning methodology over an imbalanced dataset, multi-task learning does improve performance for more sophisticated model like DeBERTa with a much more balanced dataset after augmentation.
|
Thomas Papadimos, Nick Pantelidis, Stelios Andreadis, Aristeidis Bozas, Ilias Gialampoukidis, Stefanos Vrochidis, et al. (2022). Real-time Alert Framework for Fire Incidents Using Multimodal Event Detection on Social Media Streams. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 623–635). Tarbes, France.
Abstract: The frequency of wildfires is growing day by day due to vastly climate changes. Forest fires can have a severe impact on human lives and the environment, which can be minimised if the population has early and accurate warning mechanisms. To date, social media are able to contribute to early warning with the additional, crowd-sourced information they can provide to the emergency response workers during a crisis event. Nevertheless, the detection of real-world fire incidents using social media data, while filtering out the unavoidable noise, remains a challenging task. In this paper, we present an alert framework for the real-time detection of fire events and we propose a novel multimodal event detection model, which fuses both probabilistic and graph methodologies and is evaluated on the largest fires in Spain during 2019.
|
Zijun Long, & Richard McCreadie. (2022). Is Multi-Modal Data Key for Crisis Content Categorization on Social Media? In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 1068–1080). Tarbes, France.
Abstract: The user-base of social media platforms, like Twitter, has grown dramatically around the world over the last decade. As people post everything they experience on social media, large volumes of valuable multimedia content are being recorded online, which can be analysed to help for a range of tasks. Here we specifically focus on crisis response. The majority of prior works in this space focus on using machine learning to categorize single-modality content (e.g. text of the posts, or images shared), with few works jointly utilizing multiple modalities. Hence, in this paper, we examine to what extent integrating multiple modalities is important for crisis content categorization. In particular, we design a pipeline for multi-modal learning that fuses textual and visual inputs, leverages both, and then classifies that content based on the specified task. Through evaluation using the CrisisMMD dataset, we demonstrate that effective automatic labelling for this task is possible, with an average of 88.31% F1 performance across two significant tasks (relevance and humanitarian category classification). while also analysing cases that unimodal models and multi-modal models success and fail.
|