Oleg Aulov, Adam Price, & Milton Halem. (2014). AsonMaps: A platform for aggregation visualization and analysis of disaster related human sensor network observations. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 802–806). University Park, PA: The Pennsylvania State University.
Abstract: In this paper, we describe AsonMaps, a platform for collection, aggregation, visualization and analysis of near real-time, geolocated quantifiable information from a variety of heterogeneous social media outlets in order to provide emergency responders and other coordinating federal agencies not only with the means of listening to the affected population, but also to be able to incorporate this data into geophysical and probabilistic disaster forecast models that guide their response actions. Hurricane Sandy disaster is examined as a use-case scenario discussing the different types of quantifiable information that can be extracted from Instagram and Twitter.
|
Thomas Bader, Andreas Meissner, & Rolf Tscherney. (2008). Digital Map Table with Fovea-Tablett®: Smart furniture for emergency operation centers. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 679–688). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: During large-scale crisis events special emergency management structures are put in place in order to execute administrative-strategic and/or technical-tactical functions for potentially large geographical areas. The adequacy of information systems and the communication capabilities within such management structures largely determine the quality of situation awareness and are thus crucial for the effectiveness and efficiency of the emergency managers' work. In this field, this paper makes a threefold contribution: In the first part we provide a description of the organizational structure and the tasks in an emergency operation center (EOC) from a practitioner's perspective. Based on this primer, in the second part we propose four guidelines which help to design human-computer interfaces, especially adequate smart room technology, for this domain. Third, we present a system we designed along these guidelines. We specifically discuss the introduction of a Digital Map Table with Fovea-Tablett® into an EOC as “smart furniture” supporting both team and individual work.
|
Lindsley G. Boiney, Bradley Goodman, Robert Gaimari, Jeffrey Zarrella, Christopher Berube, & Janet Hitzeman. (2008). Taming multiple chat room collaboration: Real-time visual cues to social networks and emerging threads. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 660–668). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Distributed teams increasingly rely on collaboration environments, typically including chat, to link diverse experts for real time information sharing and decision-making. Current chat-based technologies enable easy exchange of information, but don't focus on managing those information exchanges. Important cues that guide face-to-face collaboration are either lost or missing. In some military environments, operators may juggle over a dozen chat rooms in order to collaborate on complex missions. This often leads to confusion, overload, miscommunication and delayed decisions. Our technology supports chat management. A summary display bar reduces the number of chat rooms operators need open by providing high level situational awareness pointers, in real-time, to: a) rooms with increasing message activity levels, b) rooms in which important collaborators are participating (those in the operator's social network), and c) rooms in which operator-selected keywords are used. This ability to peripherally monitor less critical chat rooms reduces operator overload, while enhancing the ability to rapidly detect important emerging discussion threads. © 2008 The MITRE Corporation. All rights reserved.
|
Aaron Burgman, Nikhil Kalghatgi, Erika Darling, Chris M. Newbern, Kristine Recktenwald, Shawn Chin, et al. (2006). Emergency data analysis via semantic lensing. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 334–338). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: Emergency situations often play out over extended geographic regions and can present response personnel with numerous types of data at various level of detail. Such data may be displayed in mapping software tools that organize the data into layers. Sufficiently complex scenarios can result in dense, occluded, and cluttered map displays. We investigated a localized, detail-on-demand filtering strategy called semantic lensing that in certain situations provides a more efficient and desirable approach than filtering global layers for mitigating clutter and occlusion. An initial formal user study with these semantic lenses has shown their value in aiding decision makers during tasks that might occur during detection of and response to emergency situations. Completion times are significantly faster when using lenses, and workloads are significantly lower. Future work will evaluate additional features and task-specific applicability, and may support the distribution of such a lens tool to emergency preparedness and response personnel.
|
Zvonko Grzetic, Nenad Mladineo, & Snjezana Knezic. (2008). Emergency management systems to accommodate ships in distress. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 669–678). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: As a future member of the European Union (EU), Croatia has decided to implement EU Directive 2002/59/EC of the European Parliament and of the Council binding all EU member states to define places of refuge for ships in need of assistance off their coasts, or to develop techniques for providing assistance to such ships. Consequently, the Ministry of the Sea, Tourism, Transport and Development of the Republic of Croatia has initiated a project for developing an effective Decision Support System (DSS) for defining the places of refuge for ships in distress at sea. Such a system would include a model based upon GIS and different operational research models, which would eventually result in establishing an integral DSS. Starting points for analysis are shipping corridors, and 380 potential locations for places of refuge designated in the official navigational pilot book. Multicriteria analysis, with GIS-generated input data, would be used to establish worthiness of a place of refuge for each ship category, taking into account kinds of accident. Tables of available intervention resources would be made, as well as analysis of their availability in respect of response time, and quantitative and qualitative sufficiency.
|
Vitaveska Lanfranchi, Suvodeep Mazumdar, & Fabio Ciravegna. (2014). Visual design recommendations for situation awareness in social media. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 792–801). University Park, PA: The Pennsylvania State University.
Abstract: The use of online Social Media is increasingly popular amongst emergency services to support Situational Awareness (i.e. accurate, complete and real-time information about an event). Whilst many software solutions have been developed to monitor and analyse Social Media, little attention has been paid on how to visually design for Situational Awareness for this large-scale data space. We describe an approach where levels of SA have been matched to corresponding visual design recommendations using participatory design techniques with Emergency Responders in the UK. We conclude by presenting visualisation prototypes developed to satisfy the design recommendations, and how they contribute to Emergency Responders' Situational Awareness in an example scenario. We end by highlighting research issues that emerged during the initial evaluation.
|
Tom Ritchey. (2006). Modeling multi-hazard disaster reduction strategies with computer-Aided morphological analysis. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 339–346). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: Disaster Risk Management (DRM) is a multi-dimensional problem complex requiring knowledge and experience from a wide range of disciplines. It also requires a methodology which can collate and organize this knowledge in an effective, transparent manner. Towards this end, seven specialists from the social, natural and engineering sciences collaborated in a facilitated workshop in order to develop a prototype multi-hazard disaster reduction model. The model, developed with computer-Aided morphological analysis (MA), makes it possible to identify and compare risk reduction strategies, and preparedness and mitigation measures, for different types of hazards. Due to time constraints, the model is neither complete nor accurate-but only represents a proof-of-principle. The workshop was sponsored by the Earthquake Disaster Mitigation Research Center (EDM) in Kobe, in January, 2005.
|
Brian M. Tomaszewski, & Alan M. MacEachren. (2006). A distributed spatiotemporal cognition approach to visualization in support of coordinated group activity. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 347–351). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: Technological advances in both distributed cooperative work and web-map services have the potential to support distributed and collaborative time-critical decision-making for crisis response. We address this potential through the theoretical perspective of distributed cognition and apply this perspective to development of a geocollaborationenabled web application that supports coordinated crisis management activities. An underlying goal of our overall research program is to understand how distributed cognition operates across groups working to develop both awareness of the geographic situation within which events unfold, and insights about the processes that have lead to that geographic situation over time. In this paper, we present our preliminary research on a web application that addresses these issues. Specifically, the application (key parts of which are implemented) enables online, asynchronous, map-based interaction between actors, thus supporting distributed spatial and temporal cognition, and, more specifically, situational awareness and subsequent action in the context of humanitarian disaster relief efforts.
|
Brian M. Tomaszewski, Anthony C. Robinson, Chris E. Weaver, Michael Stryker, & Alan M. MacEachren. (2007). Geovisual analytics and crisis management. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 173–179). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Increasing data heterogeneity, fragmentation and volume, coupled with complex connections among specialists in disaster response, mitigation, and recovery situations demand new approaches for information technology to support crisis management. Advances in visual analytics tools show promise to support time-sensitive collaboration, analytical reasoning, problem solving and decision making for crisis management. Furthermore, as all crises have geospatial components, crisis management tools need to include geospatial data representation and support for geographic contextualization of location-specific decision-making throughout the crisis. This paper provides an introduction to and description of Geovisual Analytics applied to crisis management activity. The goal of Geovisual Analytics in this context is to support situational awareness, problem solving, and decision making using highly interactive, visual environments that integrate multiple data sources that include georeferencing. We use an emergency support function example to discuss how recent progress in Geovisual Analytics can address the issues a crisis can present.
|
Chris J. Van Aart, & Stijn Oomes. (2008). Real-time organigraphs for collaboration awareness. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 651–659). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Collaboration awareness, as extension to organization awareness, is knowing how organizations do work and achieve their goals. This knowledge moves on a scale from stated prescribed ways of acting (such as procedures and protocols) to informal channels of communication, teamwork and decision-making. Based on available static and dynamic data, standardized insights can be given about collaboration in emergency situations in the form of organigraphs. We argue that for gaining practical collaboration awareness, both the formal structure of an organization as well as informal interactions should be inspected. Informal interaction includes informal communication channels, actual decision making on the spot and multi-disciplinary joint activities. We have implemented our system in the form of a web-based visualization tool. This tool would have been useful in the Hercules disaster, giving insights in informal information exchange, possibly preventing fatal decisions.
|