|
Adriaan Ter Mors, Xiaoyu Mao, Nicola Roos, Cees Witteveen, & Alfons H. Salden. (2007). Multi-agent system support for scheduling aircraft de-icing. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 467–478). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Results from disaster research suggest that methods for coordination between individual emergency responders and organizations should recognize the independence and autonomy of these actors. These actor features are key factors in effective adaptation and improvisation of response to emergency situations which are inherently uncertain. Autonomy and adaptability are also well-known aspects of a multi-agent system (MAS). In this paper we present two MAS strategies that can effectively handle aircraft deicing incidents. These MAS strategies help improve to prevent and reduce e.g. airplane delays at deicing stations due to changing weather conditions or incidents at the station, where aircraft agents adopting pre-made plans that would act on behalf of aircraft pilots or companies, would only create havoc. Herein each agent using its own decision mechanism deliberates about the uncertainty in the problem domain and the preferences (or priorities) of the agents. Furthermore, taking both these issues into account each proposed MAS strategy outperforms a naive first-come, first-served coordination strategy. The simulation results help pilots and companies taking decisions with respect to the scheduling of the aircraft for deicing when unexpected incidents occur: they provide insights in the impacts and means for robust selection of incident-specific strategies on e.g. deicing station delays of (individual) aircraft.
|
|