Beau Bouchard, & Brian M. Tomaszewski. (2012). Automated space aid program. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: As the geographic scale, operational complexity and frequency of disasters continues coupled with ever-increasing amounts of information related to disaster response activity, the crisis management practitioner and research communities are calling for new methodologies for processing and visually representing disaster information [1]. More specifically, there is a growing body of research focused on how analytical outputs based on remote sensing and Geographic Information System (GIS) such as disaster impact assessments can be formatted into usable information products for crisis management practitioners[2]. © 2012 ISCRAM.
|
Brian M. Tomaszewski, & Alan M. MacEachren. (2006). A distributed spatiotemporal cognition approach to visualization in support of coordinated group activity. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 347–351). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: Technological advances in both distributed cooperative work and web-map services have the potential to support distributed and collaborative time-critical decision-making for crisis response. We address this potential through the theoretical perspective of distributed cognition and apply this perspective to development of a geocollaborationenabled web application that supports coordinated crisis management activities. An underlying goal of our overall research program is to understand how distributed cognition operates across groups working to develop both awareness of the geographic situation within which events unfold, and insights about the processes that have lead to that geographic situation over time. In this paper, we present our preliminary research on a web application that addresses these issues. Specifically, the application (key parts of which are implemented) enables online, asynchronous, map-based interaction between actors, thus supporting distributed spatial and temporal cognition, and, more specifically, situational awareness and subsequent action in the context of humanitarian disaster relief efforts.
|
Brian M. Tomaszewski, Anthony C. Robinson, Chris E. Weaver, Michael Stryker, & Alan M. MacEachren. (2007). Geovisual analytics and crisis management. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 173–179). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Increasing data heterogeneity, fragmentation and volume, coupled with complex connections among specialists in disaster response, mitigation, and recovery situations demand new approaches for information technology to support crisis management. Advances in visual analytics tools show promise to support time-sensitive collaboration, analytical reasoning, problem solving and decision making for crisis management. Furthermore, as all crises have geospatial components, crisis management tools need to include geospatial data representation and support for geographic contextualization of location-specific decision-making throughout the crisis. This paper provides an introduction to and description of Geovisual Analytics applied to crisis management activity. The goal of Geovisual Analytics in this context is to support situational awareness, problem solving, and decision making using highly interactive, visual environments that integrate multiple data sources that include georeferencing. We use an emergency support function example to discuss how recent progress in Geovisual Analytics can address the issues a crisis can present.
|
Brian M. Tomaszewski, & Lóránt Czárán. (2009). Geographically visualizing consolidated appeal process (CAP) information. In S. J. J. Landgren (Ed.), ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives. Gothenburg: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Maps are essential visual advocacy devices for humanitarian relief projects. Maps provide advocacy by presenting, disseminating, and analyzing humanitarian relief project information in formats that are easier to understand and reason with. In this paper, we present our preliminary work on geographically visualizing Consolidated Appeals Process (CAP) information. The practical intent of our work is to (a) provide advocacy for CAP projects by geographically representing project information such as funding status so that (b) the nature of a project is better understood, thus potentially leading to increased project donations and improved project funding decision making. We provide examples of a prototype mapping application built to utilize Google Earth[TM] for representing CAP project information in map-based formats.
|