|
Gary M. Fetter, & Mauro Falasca. (2011). Establishing the need for decision support in disaster debris disposal. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: One of the most important and costly aspects of recovery operations is debris collection and disposal. The unique nature of disaster debris and the extreme amounts generated as a result of the disaster event create challenges for decision makers that are not typically encountered during every day solid-waste disposal operations. This work-in-progress research is aimed at identifying the unique aspects of disaster debris disposal and the need for decision support, which addresses these unique aspects, to assist emergency management coordinators with allocating resources during on-going debris cleanup operations. We will present a decision support system framework, discuss aspects of the knowledge base, model base, and user interface, and show how an emergency management coordinator might use the system during ongoing daily operations using real-world data from a 2003 Atlantic hurricane.
|
|
|
Gary M. Fetter, Mauro Falasca, Christopher W. Zobel, & Terry R. Rakes. (2010). A multi-stage decision model for debris disposal operations. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: As shown by Hurricane Katrina, disposing of disaster-generated debris can be quite challenging. Extraordinary amounts of debris far exceeding typical annual amounts of solid waste are almost instantaneously deposited across a widespread area. Although the locations and amounts of debris can be easily summarized looking back after recovery activities have been completed, they are uncertain and difficult at best to estimate as debris operations begin to unfold. Further complicating matters is that the capacity of cleanup resources, which is dependent upon available equipment, labor, and subcontractors, can fluctuate during on-going cleanup operations. As a result, debris coordinators often modify initial resource assignments as more accurate debris estimates and more stable resource capacities become known. In this research, we develop a computer-based decision support system that incorporates a multi-stage programming model to assist decision makers with allocating debris cleanup resources immediately following a crisis event and during ongoing operations as debris volumes and resource capacities become known with increasing certainty.
|
|
|
Mauro Falasca, Christopher W. Zobel, & Gary M. Fetter. (2009). An optimization model for humanitarian relief volunteer management. In S. J. J. Landgren (Ed.), ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives. Gothenburg: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: One of the challenges of humanitarian organizations is that there exist limited decision technologies that fit their needs. It has also been pointed out that those organizations experience coordination difficulties with volunteers willing to help. The purpose of this paper is to help address those challenges through the development of a decision model to assist in the management of volunteers. While employee workforce management models have been the topic of extensive research over the past decades, no work has focused on the problem of managing humanitarian relief volunteers. In this paper, we discuss a series of principles from the field of volunteer management and develop a multi criteria optimization model to assist in the assignment of volunteers to tasks. We present an illustrative example and analyze a solution methodology where the decision maker exercises his/her preferences by trading-off conflicting objectives. Conclusions, limitations, and directions for future research are also discussed.
|
|