Cruz, J. A. dela, Hendrickx, I., & Larson, M. (2023). Towards XAI for Information Extraction on Online Media Data for Disaster Risk Management. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 478–486). Omaha, USA: University of Nebraska at Omaha.
Abstract: Disaster risk management practitioners have the responsibility to make decisions at every phase of the disaster risk management cycle: mitigation, preparedness, response and recovery. The decisions they make affect human life. In this paper, we consider the current state of the use of AI in information extraction (IE) for disaster risk management (DRM), which makes it possible to leverage disaster information in social media. We consolidate the challenges and concerns of using AI for DRM into three main areas: limitations of DRM data, limitations of AI modeling and DRM domain-specific concerns, i.e., bias, privacy and security, transparency and accountability, and hype and inflated expectations. Then, we present a systematic discussion of how explainable AI (XAI) can address the challenges and concerns of using AI for IE in DRM.
|