Nurollahian, S., Talegaonkar, I., Bell, A. Z., & Kogan, M. (2023). Factors Affecting Public’s Engagement with Tweets by Authoritative Sources During Crisis. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 459–477). Omaha, USA: University of Nebraska at Omaha.
Abstract: People increasingly use social media at the time of crisis, which produces a social media data deluge, where the public may find it difficult to locate trustworthy and credible information. Therefore, they often turn to authoritative sources: official individuals and organizations who are trusted to provide reliable information. It is then imperative that their credible messages reach and engage the widest possible audience, especially among those affected. In this study, we explore the role of metadata and linguistic factors in facilitating three types of engagement — retweets, replies, and favorites— with posts by authoritative sources. We find that many factors are similarly important across models (popularity, sociability, activity). However, some features are salient for only a specific type of engagement. We conclude by providing guidance to authoritative sources on how they may optimize specific types of engagement: retweets for information propagation, replies for in-depth sense-making, and favorites for cross-purpose visibility.
|
Wang, D., & Kogan, M. (2023). Resonance+: Augmenting Collective Attention to Find Information on Public Cognition and Perception of Risk. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 487–500). Omaha, USA: University of Nebraska at Omaha.
Abstract: Microblogging platforms have been increasingly used by the public and crisis managers in crisis. The increasing volume of data has made such platforms more difficult for officials to find on-the-ground information and understand the public’s perception of the evolving risks. The crisis informatics literature has proposed various technological solutions to find relevant information from social media. However, the cognitive processes of the affected population and their subsequent responses, such as perceptions, emotional and behavioral responses, are still under-examined at scale. Yet, such information is important for gauging public perception of risks, an important task for PIOs and emergency managers. In this work, we leverage the noise-cutting power of collective attention and take cues from the Protective Action Decision Model, to propose a method that estimates shifts in collective attention with a special focus on the cognitive processes of those affected and their subsequent responses.
|