Siska Fitrianie, & Leon J. M. Rothkrantz. (2015). Dynamic Routing during Disaster Events. In L. Palen, M. Buscher, T. Comes, & A. Hughes (Eds.), ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management. Kristiansand, Norway: University of Agder (UiA).
Abstract: Innovations in mobile technology allow the use of Internet and smartphones for communicating disasters and coordinating evacuations. However, given the turbulent nature of disaster situations, the people and systems at crisis center are subjected to information overload, which can obstruct timely and accurate information sharing. A dynamic and automated evacuation plan that is able to predict future disaster outcome can be used to coordinate the affected people to safety in times of crisis. In this paper, we present a dynamic version of the shortest path algorithm of Dijkstra. The algorithm is able to compute the shortest path from the user?s location (sent by the smartphone) to the safety area by taking into account possible affected areas in future. We aim at employing the computed routes on our mobile communication system for navigating affected people during emergency and disaster evacuations. Two simulation studies have validated the performance of the developed algorithm.
|
Leon J. M. Rothkrantz, & Siska Fitrianie. (2015). Bayesian Classification of Disaster Events on the Basis of Icon Messages of Observers. In L. Palen, M. Buscher, T. Comes, & A. Hughes (Eds.), ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management. Kristiansand, Norway: University of Agder (UiA).
Abstract: During major disaster events, human operators in a crisis center will be overloaded with under-stress a flood of phone calls. As an increasing number of people in and around big cities do not master the native language, the need for automated systems that automatically process the context and content of information about disaster situations from the communicated messages becomes apparent. To support language-independent communication and to reduce the ambiguity and multitude semantics, we developed an icon-based reporting observation system. Contrast to previous approaches of such a system, we link icon messages to disaster events without using Natural Language Processing. We developed a dedicated set of icons related to the context and characteristic features of disaster events. The developed system is able to compute the probability of the appearance of possible disaster events using Bayesian reasoning. In this paper, we present the reporting system, the developed icons, the Bayesian model, and the results of two experiments.
|
Lucy T. Gunawan, Siska Fitrianie, Willem-Paul Brinkman, & Mark A. Neerincx. (2012). Utilizing the potential of the affected population and prevalent mobile technology during disaster response: Propositions from a literature survey. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: Despite the growing awareness of the untapped potential of the affected population in a disaster situation, their inclusion in a disaster management is extremely limited. This study aims to survey the literature to see whether utilizing the affected people and prevalent mobile technology can be used during disaster response. The idea is to provide the affected with a way to lead themselves to safety and empower them to serve as distributed active sources of information. This way, those people will reach safety by themselves, while at the same time helping to construct a clear image of the disaster situation without burdening the already overwhelmed emergency services. This study examines knowledge derived from disaster sociology, draws on experience from recent disasters, and extrapolates current technological solutions. By establishing that such a solution is feasible, it offers a basis for empirical studies on a mobile technology that can be used during disaster response. © 2012 ISCRAM.
|
Siska Fitrianie, & Leon J.M. Rothkrantz. (2009). Computed ontology-based situation awareness of multi-user observations. In S. J. J. Landgren (Ed.), ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives. Gothenburg: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In recent years, we have developed a framework of human-computer interaction that offers recognition of various communication modalities including speech, lip movement, facial expression, handwriting/drawing, gesture, text and visual symbols. The framework allows the rapid construction of a multimodal, multi-device, and multi-user communication system within crisis management. This paper reports the approaches used in multi-user information integration (input fusion) and multimodal presentation (output fission) modules, which can be used in isolation, but also as part of the framework. The latter is able to specify and produce contextsensitive and user-tailored output combining language, speech, visual-language and graphics. These modules provide a communication channel between the system and users with different communication devices. By the employment of ontology, the system's view about the world is constructed from multi-user observations and appropriate multimodal responses are generated.
|
Siska Fitrianie, Zhenke Yang, & Leon J.M. Rothkrantz. (2008). Developing concept-based user interface using icons for reporting observations. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 394–405). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In recent years, we have developed a visual communication interface for reporting observations in which messages can be constructed using a spatial arrangement of icons. Each icon on the interface represents a concept or idea. This paper reports about research on a visual language interface, which allows users to create structured messages of icon strings simultaneously in a two-dimensional parallel and spatial configuration. The developed system provides drawing tools and predefined sets of icons that support a free and natural way to sketch and describe crisis situations. A coherent and context dependent interpretation of the icon configuration can be constructed by the employment of ontology. In addition, the interface is also able to convert the interpretation into crisis scenarios as feedback to the user on his/her input.
|
Siska Fitrianie, & Leon J.M. Rothkrantz. (2007). An automated crisis online dispatcher. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 525–536). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: An experimental automated dialogue system that plays the role of a crisis hotline dispatcher is currently developed. Besides controlling the communication flow, this system is able to retrieve information about crisis situations from user's input. It offers a natural user interaction by the ability to perceive and respond to human emotions. The system has an emotion recognizer that is able to recognize the emotional loading from user's linguistic content. The recognizer uses a database that contains selected keywords on a 2D “arousal” and “valence” scale. The output of the system provides not only the information about the user's emotional state but also an indication of the urgency of his/her information regarding to crisis. The dialogue system is able to start a user friendly dialogue, taking care of the content, context and emotional loading of user's utterances.
|
Siska Fitrianie, Ronald Poppe, Trung H. Bui, Alin Gavril Chitu, Dragos Datcu, Ramón Dor, et al. (2007). A multimodal human-computer interaction framework for research into crisis management. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 149–158). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Unreliable communication networks, chaotic environments and stressful conditions can make communication during crisis events difficult. The current practice in crisis management can be improved by introducing ICT systems in the process. However, much experimentation is needed to determine where and how ICT can aid. Therefore, we propose a framework in which predefined modules can be connected in an ad hoc fashion. Such a framework allows for rapid development and evaluation of such ICT systems. The framework offers recognition of various communication modalities including speech, lip movement, facial expression, handwriting and drawing, body gesture, text and visual symbols. It provides mechanisms to fuse these modalities into a context dependent interpretation of the current situation and generate appropriate the multimodal information responses. The proposed toolbox can be used as part of a disaster and rescue simulation. We propose evaluation methods, and focus on the technological aspects of our framework.
|