Antone Evans Jr., Yingyuan Yang, & Sunshin Lee. (2021). Towards Predicting COVID-19 Trends: Feature Engineering on Social Media Responses. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 792–807). Blacksburg, VA (USA): Virginia Tech.
Abstract: During the course of this pandemic, the use of social media and virtual networks has been at an all-time high. Individuals have used social media to express their thoughts on matters related to this pandemic. It is difficult to predict current trends based on historic case data because trends are more connected to social activities which can lead to the spread of coronavirus. So, it's important for us to derive meaningful information from social media as it is widely used. Therefore, we grouped tweets by common keywords, found correlations between keywords and daily COVID-19 statistics and built predictive modeling. The features correlation analysis was very effective, so trends were predicted very well. A RMSE score of 0.0425504, MAE of 0.03295105 and RSQ of 0.5237014 in relation to daily deaths. In addition, we found a RMSE score of 0.07346836, MAE of 0.0491152 and RSQ 0.374529 in relation to daily cases.
|
Seungwon Yang, Haeyong Chung, Xiao Lin, Sunshin Lee, Liangzhe Chen, Andrew Wood, et al. (2013). PhaseVis1: What, when, where, and who in visualizing the four phases of emergency management through the lens of social media. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 912–917). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: The Four Phase Model of Emergency Management has been widely used in developing emergency/disaster response plans. However, the model has received criticism contrasting the clear phase distinctions in the model with the complex and overlapping nature of phases indicated by empirical evidence. To investigate how phases actually occur, we designed PhaseVis based on visualization principles, and applied it to Hurricane Isaac tweet data. We trained three classification algorithms using the four phases as categories. The 10-fold cross-validation showed that Multi-class SVM performed the best in Precision (0.8) and Naïve Bayes Multinomial performed the best in F-1 score (0.782). The tweet volume in each category was visualized as a ThemeRiver[TM], which shows the 'What' aspect. Other aspects – 'When', 'Where', and 'Who' – Are also integrated. The classification evaluation and a sample use case indicate that PhaseVis has potential utility in disasters, aiding those investigating a large disaster tweet dataset.
|