|
Guido Bruinsma, & Robert De Hoog. (2006). Exploring protocols for multidisciplinary disaster response using adaptive workflow simulation. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 53–65). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: The unique and dynamic changing nature in which a disaster unfolds forces emergency personnel involved with the mitigation process to be greatly flexible in their implementation of protocols. In past disasters the incapability of the disaster organization to swiftly adjust the workflow to the changing circumstances, has resulted in unnecessary delays and errors in mitigation. Addressing this issue, we propose and demonstrate a method for simulating disasters for work and protocol optimization in disasters response (TAID), based on the BRAHMS multi-agent modeling and simulation language. Our hypothesis is that this low fidelity simulation environment can effectively simulate work practice in dynamic environments to rearrange workflow and protocols. The results from an initial test simulation of the Hercules disaster at Eindhoven airport in the Netherlands look promising for future and broader application of our disaster simulation method.
|
|
|
Marline Claessens, Nicolas Lewyckyj, Jane Biesemans, & Jurgen Everaerts. (2005). Pegasus, a UAV project for disaster management. In B. C. B. Van de Walle (Ed.), Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management (pp. 233–236). Brussels: Royal Flemish Academy of Belgium.
Abstract: The Flemish Institute for Technological Research (Vito) in Belgium has initiated in 2000 the PEGASUS (Policy support for European Governments by Acquisition of information from Satellite and UAV-borne Sensors) project which envisages the development of a solar powered UAV (Unmanned Aerial Vehicle) containing several types of instruments for remote sensing and flying at an altitude of about 20 km. The aircraft can be deployed rapidly in crisis situations and provide disaster managers with ~1 m resolution images (or better if required) of the affected area. High quality data shall be received in less than half an hour from a mobile ground station that is in direct contact with the UAV, which can operate as long as requested by the user. The PEGASUS HALE-UAV is a flexible and cost-effective tool that will allow officials and local authorities to dispose quickly over relevant geographical information in an emergency situation. The first demonstration flight of the PEGASUS HALE-UAV shall take place in the summer of 2005 over Flanders.
|
|
|
Eduard Santamaria, Florian Segor, & Igor Tchouchenkov. (2013). Rapid aerial mapping with multiple heterogeneous unmanned vehicles. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 592–596). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: In this article, work in progress on a system for rapid aerial mapping is presented. We believe that a tool able to quickly generate an up-to-date high resolution aerial view, e.g. shortly after a natural disaster or a big incident occurs, can be a highly valuable asset to help first responders in the decision making. The presented work focuses on the path planning capabilities of the system, together with the area partitioning and workload distribution among a team of multi-rotor unmanned aircraft. Sensor footprint and range of the involved aircraft may differ. The presented approach is based on an approximate cellular decomposition of the area of interest. The results of this work will be integrated into an existing system which already provides a mobile ground control station able to supervise and control multiple sensor carriers.
|
|
|
James Fielding Smith, & Teo A. Babun Jr. (2014). The port resiliency program (PReP): Upgrading Latin American and Caribbean ports. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 538–545). University Park, PA: The Pennsylvania State University.
Abstract: Improving resiliency of airports and seaports can accelerate both humanitarian relief and economic and social recovery in regions struck by natural or manmade disasters. Ports are a critical element of effective disaster response, evacuation, and recovery. They are also essential to social and economic recovery following a disaster, especially on islands dependent on trade and isolated areas such as in the Latin America and the Caribbean region. The Port Resiliency Program (PReP) presents a practical framework to enhance port resiliency and improve evaluation to support continuous improvement. Approaches include analyzing strengths and weaknesses, fostering understanding, communication, and cooperation among stakeholders, caching essential resources ahead of time, building a comprehensive archive of literature, and targeting exercises to close gaps in preparedness.
|
|
|
Adriaan Ter Mors, Xiaoyu Mao, Nicola Roos, Cees Witteveen, & Alfons H. Salden. (2007). Multi-agent system support for scheduling aircraft de-icing. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 467–478). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Results from disaster research suggest that methods for coordination between individual emergency responders and organizations should recognize the independence and autonomy of these actors. These actor features are key factors in effective adaptation and improvisation of response to emergency situations which are inherently uncertain. Autonomy and adaptability are also well-known aspects of a multi-agent system (MAS). In this paper we present two MAS strategies that can effectively handle aircraft deicing incidents. These MAS strategies help improve to prevent and reduce e.g. airplane delays at deicing stations due to changing weather conditions or incidents at the station, where aircraft agents adopting pre-made plans that would act on behalf of aircraft pilots or companies, would only create havoc. Herein each agent using its own decision mechanism deliberates about the uncertainty in the problem domain and the preferences (or priorities) of the agents. Furthermore, taking both these issues into account each proposed MAS strategy outperforms a naive first-come, first-served coordination strategy. The simulation results help pilots and companies taking decisions with respect to the scheduling of the aircraft for deicing when unexpected incidents occur: they provide insights in the impacts and means for robust selection of incident-specific strategies on e.g. deicing station delays of (individual) aircraft.
|
|