|
Narjès Bellamine-Ben Saoud, Julie Dugdale, Bernard Pavard, Mohamed Ben Ahmed, Tarek Ben Mna, & Néjia Ben Touati. (2004). Towards planning for emergency activities in large-scale accidents: An interactive and generic agent-based simulator. In B. C. B. Van de Walle (Ed.), Proceedings of ISCRAM 2004 – 1st International Workshop on Information Systems for Crisis Response and Management (pp. 173–177). Brussels: Royal Flemish Academy of Belgium.
Abstract: In this paper we describe the design and development of an interactive and generic agent based simulator, providing valuable support for organizing the emergency rescue plans of a large-scale accident. Analysis of real rescue activities has been conducted in collaboration with medical experts in order to understand the collaborative process and the involved actors and features. Based on the emergency analysis, an agent-based model and simulator was constructed including (1) the autonomous Agents – representing victims with evolving illness and rescuers (doctors, nurses, fireman) collaborating to rescue the first ones; (2) the Environment -representing the accident site having obstacles and dangerous areas and where the victims are initially spread and the doctors move to explore -perceive – treat and helpers evacuate; (3) the Interactions between rescuers – exploring collectively, evacuating by pairs, communicating directly or via artefacts- (4) the Organization of actors as distributed “independent” sub-teams in various site sub-zones or as a centralized whole team conducted by the rescue chief; and (5) the User interfaces allowing mainly initial configuration of the simulations (e.g. number of victims and states, followed strategies, rescuers behaviours), continuous visual control of the process of rescuing (e.g. site overview with acting-interacting agents, graphics, text descriptions), dynamic changes of parameters of an on-going simulation (e.g. adding new victims, adding new rescuers, or adding dangerous zones or new obstacles on sites) as well as step-by-step simulation. This simulation shows that it is possible to create a virtual environment with cooperating agents interacting in a dynamic environment. On-line and off-line analysis of simulation traces and results enable us first understanding complex situations in rescuing activities in large-scale accidents, and than planning for responding to crisis situation. This simulation approach is useful for identifying the best scenarios and eliminating potential catastrophic combinations of parameters and values, where rescue performance could be significantly impacted. © Proceedings ISCRAM 2004.
|
|
|
T. Benjamins, & Leon J.M. Rothkrantz. (2007). Interactive simulation in crisis management. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 571–580). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Experiments in crisis management are expensive and difficult to realize. There is also a lack of training facilities in real crisis environments. Serious games and simulation can provide an alternative. We developed a system which enables interactive simulation for crisis management. It is called IMACSIM (Interactive Multi Agent Crisis Simulator Interpreter and Monitor). It is composed of the following components: First a software based platform for dynamic simulating of disasters. Next an event generator which can generate different crises situations. We designed a communication infrastructure that allows agents participants in the simulation to exchange messages. Every agent is able to observe the results of crisis events, process these events and initiate appropriate actions via a waypoint system. The decision making process is distributed among autonomous agents. Some actions may have an impact on the event generator, so there is an interaction between agents and event generator. We developed a first prototype. The design and test results will be described in this paper.
|
|
|
Christine M. Newlon, Mark Pfaff, Himalaya Patel, Gert-Jan De Vreede, & Karl MacDorman. (2009). Mega-collaboration: The Inspiration and development of an interface for large-scale disaster response. In S. J. J. Landgren (Ed.), ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives. Gothenburg: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: The need to gather and use decentralized information and resources in responding to disasters demands an integrated interface that can support large-scale collaboration. This paper describes the development of a collaboration tool interface. The tool will surpass existing groupware and social networking applications, providing easy entry, categorization, and visualization of masses of critical data; the ability to form ad-hoc teams with collaboration protocols for negotiated action; and agent-augmented mixed-initiative tracking and coordination of these activities. The paper reports user testing results concerning the data entry interface, emergent leadership, and the directed negotiation process. The paper also discusses planned enhancements, including formalized collaboration engineering and the use of a disaster simulation test bed.
|
|
|
J. Renze Steenhuisen, Mathijs M. De Weerdt, & Cees Witteveen. (2007). Enabling agility through coordinating temporally constrained planning agents. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 457–466). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In crisis response, hierarchical organizations are being replaced by dynamic assemblies of autonomous agents that promise more agility. However, these autonomous agents might cause a decrease in effectiveness when individually constructed plans for moderately-coupled tasks are not jointly feasible. Existing coordination techniques can be applied in the pre-planning phase to guarantee feasible joint plans for partially-ordered tasks. Temporal relations in crisis response are often more complex than the simple precedence relations in current work. Therefore, we analyze whether temporal information can be dealt with by a conversion to partially-ordered tasks with only precedence constraints. Time windows and two temporal constraints (overlaps and during) can be rewritten in such a way that the task remains partially-ordered. When other temporal constraints (meets, starts, finishes, and equals) are used, tasks become tightly-coupled, requiring coordination in the execution phase as well. This work shows the applicability of pre-planning coordination as an enabling technology for the effective formation of agile organizations.
|
|