Leon J. M. Rothkrantz, & Siska Fitrianie. (2015). Bayesian Classification of Disaster Events on the Basis of Icon Messages of Observers. In L. Palen, M. Buscher, T. Comes, & A. Hughes (Eds.), ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management. Kristiansand, Norway: University of Agder (UiA).
Abstract: During major disaster events, human operators in a crisis center will be overloaded with under-stress a flood of phone calls. As an increasing number of people in and around big cities do not master the native language, the need for automated systems that automatically process the context and content of information about disaster situations from the communicated messages becomes apparent. To support language-independent communication and to reduce the ambiguity and multitude semantics, we developed an icon-based reporting observation system. Contrast to previous approaches of such a system, we link icon messages to disaster events without using Natural Language Processing. We developed a dedicated set of icons related to the context and characteristic features of disaster events. The developed system is able to compute the probability of the appearance of possible disaster events using Bayesian reasoning. In this paper, we present the reporting system, the developed icons, the Bayesian model, and the results of two experiments.
|
Leon J.M. Rothkrantz, & Zhenke Yang. (2009). Crowd control by multiple cameras. In S. J. J. Landgren (Ed.), ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives. Gothenburg: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: One of the goals of the crowd control project at Delft University of Technology is to detect and track people during a crisis event, classify their behavior and assess what is happening. The assumption is that the crisis area is observed by multiple cameras (fixed or mobile). The cameras sense the environment and extract features such as the amount of motion. These features are the input to a Bayesian network with nodes corresponding to situations such as terroristic attack, fire, and explosion. Given the probabilities of the observed features, by reasoning, the likelihood of the possible situations can be computed. A prototype was tested in a train compartment and its environment. Forty scenarios, performed by actors, were recorded. From the recordings the conditional probabilities have been computed. The scenarios are designed as scripts which proved to be a good methodology. The models, experiments and results will be presented in the paper.
|
Krispijn Scholte, & Leon J.M. Rothkrantz. (2014). Personal warning system for vessels under bad weather conditions. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 359–368). University Park, PA: The Pennsylvania State University.
Abstract: Many services provide weather forecasts, including severe weather alerts for the marine. It proves that many ships neglect the warnings because they expect to be able to handle the bad weather conditions. In order to identify possible unsafe situations the Coast Guard needs to observe marine vessel traffic 24 hours, 7 days a week. In this paper we propose a system that is able to support the Coast Guard. Ships can be localized and tracked individually using the Automatic Identification System (AIS). We present a system which is able to send a personal alert to ships expected to be in danger now or the near future. Ships will be monitored in the dangerous hours and routed to safe areas in the shortest time. The system is based on AIS data, probabilistic reasoning and expertise from the Coast Guard. A first prototype will be presented for open waters around the Netherlands.
|