|
Zahra Ashktorab, Christopher Brown, Manojit Nandi, & Aron Culotta. (2014). Tweedr: Mining twitter to inform disaster response. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 354–358). University Park, PA: The Pennsylvania State University.
Abstract: In this paper, we introduce Tweedr, a Twitter-mining tool that extracts actionable information for disaster relief workers during natural disasters. The Tweedr pipeline consists of three main parts: classification, clustering and extraction. In the classification phase, we use a variety of classification methods (sLDA, SVM, and logistic regression) to identify tweets reporting damage or casualties. In the clustering phase, we use filters to merge tweets that are similar to one another; and finally, in the extraction phase, we extract tokens and phrases that report specific information about different classes of infrastructure damage, damage types, and casualties. We empirically validate our approach with tweets collected from 12 different crises in the United States since 2006.
|
|
|
Soudip Roy Chowdhury, Muhammad Imran, Muhammad Rizwan Asghar, Amer-Yahia, S., & Carlos Castillo. (2013). Tweet4act: Using incident-specific profiles for classifying crisis-related messages. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 834–839). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: We present Tweet4act, a system to detect and classify crisis-related messages communicated over a microblogging platform. Our system relies on extracting content features from each message. These features and the use of an incident-specific dictionary allow us to determine the period type of an incident that each message belongs to. The period types are: Pre-incident (messages talking about prevention, mitigation, and preparedness), during-incident (messages sent while the incident is taking place), and post-incident (messages related to the response, recovery, and reconstruction). We show that our detection method can effectively identify incident-related messages with high precision and recall, and that our incident-period classification method outperforms standard machine learning classification methods.
|
|