Eva Törnqvist, Johan Sigholm, & Simin Nadjm-Tehrani. (2009). Hastily formed networks for disaster response: Technical heterogeneity and virtual pockets of local order. In S. J. J. Landgren (Ed.), ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives. Gothenburg: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: As natural and man-made disasters become increasingly common, ensuring effective disaster response, mitigation and recovery is growing into a high-priority task for governments and administrations globally. This paper describes the challenges of collaboration within multi-organisational hastily formed networks for post-disaster response, which are increasingly relying on emerging ICT infrastructures for communication and cooperation. We present an interdisciplinary analysis of the conditions for establishing an effective mutual conversation space for involved stakeholders, and how the development of socio-technological systems affects cognitive and behavioural aspects such as established communities of practice and virtual pockets of local order. Our observations thus far suggest that some of the key issues are overcoming organisational and cultural heterogeneity, and finding solutions for technical interoperability, to ensure effective, pervasive and sustainable information exchange within and between organisations participating in hastily formed networks.
|
Ola Leifler. (2008). Combining technical and human-centered strategies for decision support in command and control: The ComPlan approach. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 504–515). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: ComPlan (A Combined, Collaborative Command and Control Planning tool) is an approach to providing knowledge-based decision support in the context of command and control. It combines technical research on automated planning tools with human-centered research on mission planning. At its core, ComPlan uses interconnected views of a planning situation to present and manipulate aspects of a scenario. By using domain knowledge flexibly, it presents immediate and directly visible feedback on constraint violations of a plan, facilitates mental simulation of events, and provides support for synchronization of concurrently working mission planners. The conceptual framework of ComPlan is grounded on three main principles from human-centered research on command and control: transparency, graceful regulation, and event-based feedback. As a result, ComPlan provides a model for applying a human-centered perspective on plan authoring tools for command and control, and a demonstration for how to apply that model in an integrated plan-authoring environment.
|
Robin E. Mays, Mark Zachry, Murat, A., & Mark P. Haselkorn. (2011). Aligning border security workflow and decision making with supporting information and communication systems. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: As part of the National Center for Border Security and Immigration (NCBSI) led by the University of Texas at El Paso (UTEP), researchers from the University of Washington, Wayne State University, and UTEP conducted a three-site study of border security operations and the role of command, control and communication (C3) systems in support of those operations. While inevitably bringing some positive capability to the environment, if C3 systems are not consciously aligned with desired practices and decision-making, the implications will not always be for the better. This is especially true of C3 systems in the border security environment because these systems are intimately intertwined with complex and critical workflow and decision-making processes, often in the context of complex and, at times, competing missions.
|
Sébastien Tremblay, Daniel Lafond, Jean-François Gagnon, Vincent Rousseau, & Rego Granlund. (2010). Extending the capabilities of the C3Fire microworld as a testing platform for research in emergency response management. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: The present paper describes the C3Fire microworld and the testing capabilities it provides for research in emergency response management. We start with a general description of C3Fire and report extensions that add a new subtask (search and rescue) relevant to the context of emergency response and a vocal communication system. We then describe how various organizational structures can be designed using this task environment and several metrics of major interest for research in crisis management, related to task performance, communication, coordination effectiveness, monitoring effectiveness, recovery from interruptions, detection of critical changes, and team adaptation. The microworld constitutes a highly flexible testing platform for research in team cognition, cognitive systems engineering and decision support for crisis management.
|