|
Aïdin Sumic, Emna Amdouni, Thierry Vidal, & Hedi Karray. (2022). Towards Flexibility Sharing in Multi-agent Dynamic Planning: The Case of the Health Crisis. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 274–284). Tarbes, France.
Abstract: Planning problems in a crisis context are a highly uncertain environment where health facilities must cooperate in providing health services to their patients. We focus on the health crisis in France due to the COVID19 pandemic. In fact, the lack of appropriate scheduling tools, resources, and communication leads hospitals to be submerged by infected patients and forced to transfer them to other hospitals. In this work we aim to provide a global solution to such planning problems to improve the current French health system. We introduce a cooperative approach called OPPIC (Operational Planning Platform for Inter-healthcare Coordination). OPPIC is based on a decentralized system, where health facilities plan is dynamic, flexible, robust to uncertainty, and respond to goals and optimization criteria. This paper proposed a first planning model to OPPIC and provided a first way of negotiation between health facilities based on their plan’s local and global flexibility.
|
|
|
B.J. Vreugdenhil, N. Bellomo, & P.S. Townsend. (2015). Using Crowd Modelling in Evacuation Decision Making. In L. Palen, M. Buscher, T. Comes, & A. Hughes (Eds.), ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management. Kristiansand, Norway: University of Agder (UiA).
Abstract: Public spaces are created to be used, and large crowds gather in many buildings and external spaces. Maintaining a high level of safety for these people is of utmost importance. Cameras are used for security reasons by control room personnel, who also monitor crowd movements in case of emergency. Crowd modelling can be used to detect and analyse time dependent and space dependent crowd behaviour. Despite the large amount of raw visual information being processed, crowd modelling has not been dedicated yet to evacuation decision making. Predictive information can assist the decision maker in assessing the situation in the early stages, potentially preventing the need for an evacuation. If evacuation is inescapable, a decision maker can use crowd modelling to define the quickest and safest evacuation routes. This kind of decision support will reduce the number of deaths that occur before and during an evacuation.
|
|
|
Jane Barnett, William Wong, David Westley, Rick Adderley, & Michelle Smith. (2011). Startle points: A proposed framework for identifying situational cues, and developing realistic emergency training scenarios. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Real-world crises are not prescriptive and may contain unexpected events, described here as startle points. Including these events in emergency training simulator scenarios is crucial in order to prepare for startle points that may arise in the real world. Startle points occur when individuals who assess and monitor emergency scenarios, are suddenly faced with an unexpected event, and are unsure how to proceed. This paper offers a non-empirical framework that explores how cues generated by startle points affect decision making. Future research will use the framework to explore how experts and novices experience, and then adapt to startle points, as a function of decision mode, situation awareness, and emotional arousal. The resulting data can then be used to identify cues surrounding startle points and as a consequence, create dynamic scenarios for online training simulators so that individuals can prepare and adapt to them, and transfer acquired skills to real-world emergencies.
|
|
|
Marie Bartels. (2014). Communicating probability: A challenge for decision support systems. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 260–264). University Park, PA: The Pennsylvania State University.
Abstract: This paper presents observations made in the course of two interorganizational crisis management exercises that were conducted in order to identify requirements for a decision support system for critical infrastructure operators. It brings into focus how different actors deal with the uncertainty of information that is relevant for other stakeholders and therefore is to be shared with them. It was analyzed how the participants articulated und comprehended assessments on how probable the reliability of a given data or prognosis was. The recipients of the information had to consider it when making decisions concerning their own network. Therefore they had to evaluate its reliability. Different strategies emerged.
|
|
|
T. Benjamins, & Leon J.M. Rothkrantz. (2007). Interactive simulation in crisis management. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 571–580). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Experiments in crisis management are expensive and difficult to realize. There is also a lack of training facilities in real crisis environments. Serious games and simulation can provide an alternative. We developed a system which enables interactive simulation for crisis management. It is called IMACSIM (Interactive Multi Agent Crisis Simulator Interpreter and Monitor). It is composed of the following components: First a software based platform for dynamic simulating of disasters. Next an event generator which can generate different crises situations. We designed a communication infrastructure that allows agents participants in the simulation to exchange messages. Every agent is able to observe the results of crisis events, process these events and initiate appropriate actions via a waypoint system. The decision making process is distributed among autonomous agents. Some actions may have an impact on the event generator, so there is an interaction between agents and event generator. We developed a first prototype. The design and test results will be described in this paper.
|
|
|
Alena L. Benson, Keith Biggers, Jim Wall, & Mark P. Haselkorn. (2010). Adaptive development of a common operating environment for crisis response and management. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Complex information and communication systems present a special challenge to system designers because these are generally deployed as large, distributed systems with diverse user groups. Crisis response and management organizations in particular expect systems to be interoperable, resilient, flexible and provide lasting benefit. Currently, systems such as Virtual USA (Department of Homeland Security) and WatchKeeper (United States Coast Guard) seek to create common situational awareness for all participating agencies in security and incident response operations. We propose adaptive development as a system development model to build upon the ideas of systems such as Virtual USA and WatchKeeper in order to create sustainable and adaptable systems. Adaptive development supports ongoing improvement through user-driven design and modification in the target environment. An internet-based dashboard demonstrated during a United States Coast Guard Sector Seattle incident response exercise serves as an emergent case study for the adaptive model.
|
|
|
Brugghemans Bert, Milis Koen, & Van de Walle Bartel. (2013). Impact of the distribution and enrichment of information on the management and coordination of a human-made fast-burning crisis. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 89–93). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: Post hoc evaluations made of crisis situations and exercises often point at communication as an important reason for the failure of the management and coordination of the crisis. Crisis managers have to deal with the problem that they (and all other actors in the field) don't have the right information to coordinate the efforts and solve the crisis situation. This paper examines the relation between the information available – more specifically the richness of the information and the distribution of the information – And the management and coordination of a typical man-made fast-burning crisis. The literature on decision making and situation awareness is reviewed and an experiment is conducted with 40 crisis managers in Belgium to assess the impact of the information. Initial results indicate a relationship between the ways a crisis team receives information and the achieved level of situation awareness, the difficulty of making decisions and the perceived complexity of the crisis.
|
|
|
Valentin Bertsch, Otto Rentz, & Jutta Geldermann. (2007). Preference elicitation and sensitivity analysis in multi-criteria group decision support for nuclear remediation management. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 395–404). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: The resolution of complex decision situations in crisis and remediation management following a man-made or natural emergency usually requires input from different disciplines and fields of expertise. Contributing to transparency and traceability of decisions and taking subjective preferences into account, multi-criteria decision analysis (MCDA) is suitable to involve various stakeholder and expert groups in the decision making process who may have diverse background knowledge and different views, responsibilities and interests. The focus of this paper is to highlight the role of MCDA in nuclear emergency and remediation management on the basis of a hypothetical case study. Special emphasis is placed on the modelling of the decision makers' preferences. The aim is to explore the sensitivity of decision processes to simultaneous variations of the subjective preference parameters and consequently to contribute to a facilitation of the preference modelling process by comprehensibly visualising and communicating the impact of the preferential uncertainties on the results of the decision analysis.
|
|
|
Nitesh Bharosa, & Marijn Janssen. (2009). Reconsidering information management roles and capabilities in disaster response decision-making units. In S. J. J. Landgren (Ed.), ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives. Gothenburg: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: When disaster strikes, the emerging task environment requires relief agencies to transform from autonomous mono-disciplinary organizations into interdependent multidisciplinary decision-making units. Evaluation studies reveal that adaptation of information management to the changing task environment is difficult resulting in poor information quality, indicating information was incorrect, outdated or even unavailable to relief workers. In this paper, we adopt a theory-driven approach to develop a set of information management roles and dynamic capabilities for disaster management. Building on the principles of advance structuring and dynamic adjustment, we develop a set of roles and capabilities, which we illustrate and extend using two field studies in the Netherlands. By studying regional relief workers in action, we found that in tactical disaster response decisionmaking units, several information management roles are not addressed and that information managers are preoccupied with information gathering and reporting, whereas information quality assurance is not on the agenda.
|
|
|
Loïc Bidoux, Jean-Paul Pignon, & Frédérick Bénaben. (2014). A model driven system to support optimal collaborative processes design in crisis management. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 245–249). University Park, PA: The Pennsylvania State University.
Abstract: This paper presents a system dedicated to support crises managers that is focused on the collaboration issues of the actors involved in the response. Based on context knowledge, decision makers' objectives and responders' capabilities, the system designs in a semi-automatic way a set of collaborative process alternatives that can optimize coordination activities during an ongoing crisis resolution. The technical design of the system mixes optimization algorithms with inference of logical rules on an ontology. Candidate processes are evaluated through multi-criteria decision analysis and proposed to the decision-makers with associated key performance indicators to help them with their choice. The overall approach is model driven through a crisis meta-model and an axiomatic theory of crisis management.
|
|
|
Lindsley G. Boiney, Bradley Goodman, Robert Gaimari, Jeffrey Zarrella, Christopher Berube, & Janet Hitzeman. (2008). Taming multiple chat room collaboration: Real-time visual cues to social networks and emerging threads. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 660–668). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Distributed teams increasingly rely on collaboration environments, typically including chat, to link diverse experts for real time information sharing and decision-making. Current chat-based technologies enable easy exchange of information, but don't focus on managing those information exchanges. Important cues that guide face-to-face collaboration are either lost or missing. In some military environments, operators may juggle over a dozen chat rooms in order to collaborate on complex missions. This often leads to confusion, overload, miscommunication and delayed decisions. Our technology supports chat management. A summary display bar reduces the number of chat rooms operators need open by providing high level situational awareness pointers, in real-time, to: a) rooms with increasing message activity levels, b) rooms in which important collaborators are participating (those in the operator's social network), and c) rooms in which operator-selected keywords are used. This ability to peripherally monitor less critical chat rooms reduces operator overload, while enhancing the ability to rapidly detect important emerging discussion threads. © 2008 The MITRE Corporation. All rights reserved.
|
|
|
Robert T. Brigantic, David S. Ebert, Courtney D. Corley, Ross Maciejewski, George A. Muller, & Aimee E. Taylor. (2010). Development of a quick look pandemic influenza modeling and visualization tool. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Federal, State, and local decision makers and public health officials must prepare and exercise complex plans to contend with a variety of possible mass casualty events, such as pandemic influenza. Through the provision of quick look tools (QLTs) focused on mass casualty events, such planning can be done with higher accuracy and more realism through the combination of interactive simulation and visualization in these tools. If an event happens, the QLTs can then be employed to rapidly assess and execute alternative mitigation strategies, and thereby minimize casualties. This can be achieved by conducting numerous “what-if” assessments prior to any event in order to assess potential health impacts (e.g., number of sick individuals), required community resources (e.g., vaccinations and hospital beds), and optimal mitigative decision strategies (e.g., school closures) during the course of a pandemic. In this presentation, we overview and demonstrate a pandemic influenza QLT, discuss some of the modeling methods and construct and visual analytic components and interface, and outline additional development concepts. These include the incorporation of a user selectable infectious disease palette, simultaneous visualization of decision alternatives, additional resource elements associated with emergency response (e.g., first responders and medical professionals), and provisions for other potential disaster events.
|
|
|
Tung Bui, & Siva Sankaran. (2006). Foundations for designing global emergency response systems (ERS). In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 72–81). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: Works on Emergency Response Systems (ERS) tend to set aside-or discuss peripherally-the global nature of catastrophes and the unique conditions under which these systems have to operate. Major disasters either affect more than one country or require the help of more than one nation. Designing ERS to manage global crisis situations pose great challenges due to incompatible technologies, language and cultural differences, variations in knowledge-level and management styles of decision makers, and resource limitations in individual countries. In this paper, we outline theoretical foundations for designing global ERS. We develop a path model that identifies the elements and their interactions needed to ensure quality of outcomes and processes of emergency response. We also prescribe a Global Information Network (GIN) architecture to provide decision-makers with timely response to crises involving global intervention.
|
|
|
Paul Burghardt. (2004). Combined systems: The combined systems point of view. In B. C. B. Van de Walle (Ed.), Proceedings of ISCRAM 2004 – 1st International Workshop on Information Systems for Crisis Response and Management (pp. 51–56). Brussels: Royal Flemish Academy of Belgium.
Abstract: Crisis Management Systems are evolving from human organizations making use of information systems towards three-layered networks of human actors, artificial agents and traditional information systems. In order to understand the qualities of such complex “COMBINED” systems a joint effort of the sciences of human and artificial systems is required. To ensure practical results, research efforts should anticipate engineering efforts by providing architectural mechanisms and patterns associated with the qualities and capabilities of Combined Systems as a whole. © Proceedings ISCRAM 2004.
|
|
|
Ana C. Calderon, Joanne Hinds, & Peter Johnson. (2014). IntCris: A tool for enhanced communication and collective decision-making during crises. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 205–214). University Park, PA: The Pennsylvania State University.
Abstract: Responding to a large-scale disaster such as an earthquake or hurricane is a collective problem. Human agents are increasingly collaborating with non-human agents (autonomous systems) in attempt to respond to a disaster. IntCris is a prototype intended to bring together interaction for human and non-human agents to aid the decision-making process by focusing on how to facilitate the “correct information to the correct agent” problem as well as encouraging new and agile behaviour. We focus on three categories of information: command, report and personal with a formal grammar to accompany the implementation. The requirements for the software were inspired by real life case studies from Hurricane Katrina, the Fukoshima Nuclear Disaster and Hurricane Sandy. The contribution of this work is to advance technology that brings together HAS (human and autonomous system interaction), in addition to enhancing collective intelligence.
|
|
|
Emma Carter, & Simon French. (2005). Nuclear emergency management in Europe: A review of approaches to decision making. In B. C. B. Van de Walle (Ed.), Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management (pp. 247–259). Brussels: Royal Flemish Academy of Belgium.
Abstract: The need for transparent and consistent decision making in nuclear emergency management across local, regional, national and international levels is well recognised. Several decision support systems have been developed to help achieve this; but, by and large, with little consultation with potential DMs and with limited understanding of the emergency management procedures across Europe and how they differ. This work, part of a European Fifth Framework project EVATECH, considers the application of process modelling to document and compare the emergency management process in four countries. We have observed that the four process models are substantially different in their organizational structure and identified differences in where decisions are made, the management of advice and the communication network style. This papers focus is on the results of the comparison and the implications for the design and use of decision support systems.
|
|
|
José Miguel Castillo, Starr Roxanne Hiltz, & Murray Turoff. (2012). Monte Carlo and decision making support in crisis management. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: Simulation is an interdisciplinary science applicable to many branches of knowledge. One field in which simulation is relevant is decision making support (DMS), in which we use computers to run models of real or possible scenarios in order to evaluate alternative actions before carrying them out. We will obtain a useful simulation system only when the model (engine of the simulation process) has been made accurately to represent reality. Thus it is necessary to use a methodology that helps us to construct a simulation system. This paper presents some classifications of simulation systems and an introduction to the Monte Carlo method, with the objective of creating a framework of application of this method for the construction of simulation systems for decision making support in crisis management. One area of applicability is scenario-based simulations for training for cross-national teams to cooperate in large scale disasters. The final aim of this research will be the recommendation of standards and methodologies to build simulation systems in crisis management, specifically in decision making support. © 2012 ISCRAM.
|
|
|
Tina Comes, Claudine Conrado, Michael Hiete, Michiel Kamermans, Gregor Pavlin, & Niek Wijngaards. (2010). An intelligent decision support system for decision making under uncertainty in distributed reasoning frameworks. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper presents an intelligent system facilitating better-informed decision making under severe uncertainty as found in emergency management. The construction of decision-relevant scenarios, being coherent and plausible descriptions of a situation and its future development, is used as a rationale for collecting, organizing, filtering and processing information for decision making. The development of scenarios is geared to assessing decision alternatives, thus avoiding time-consuming analysis and processing of irrelevant information. The scenarios are constructed in a distributed setting allowing for a flexible adaptation of reasoning (principles and processes) to the problem at hand and the information available. This approach ensures that each decision can be founded on a coherent set of scenarios, which was constructed using the best expertise available within a limited timeframe. Our theoretical framework is demonstrated in a distributed decision support system by orchestrating both automated systems and human experts into workflows tailored to each specific problem.
|
|
|
Tina Comes, Valentin Bertsch, & Simon French. (2013). Designing dynamic stress tests for improved critical infrastructure resilience. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 307–311). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: This paper outlines an approach to support decision-makers in designing resilient critical infrastructure (CI) networks. As CIs have become increasingly interdependent disruptions can have far-reaching impacts. We focus on the vulnerability of CIs and the socio-economic systems, in which they are embedded, independent from any initial risk event. To determine which disruptions are the most severe and must be avoided, quantitative and qualitative assessments of a disruption's consequences and the perspectives of multiple stakeholders need to be integrated. To this end, we combine the results of consequence models and expert assessments into stress test scenarios, which are evaluated using multi-criteria decision analysis techniques. This approach enables dynamic adaption of the stress tests in the face of a fast changing environment and to take account of better information about interdependencies or changing preferences. This approach helps make trade-offs between costs for resilient CIs and potential losses of disruptions clearly apparent.
|
|
|
Louise K. Comfort, Brian Colella, Mark Voortman, Scott Connelly, Jill L. Drury, Gary L. Klein, et al. (2013). Real-time decision making in urgent events: Modeling options for action. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 571–580). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: Decision making in extreme events presents a difficult challenge to emergency managers who are legally responsible for protecting life, property, and maintaining continuity of operations for their respective organizations or communities. Prior research has identified the benefits of gaining situation awareness in rapidly changing disaster contexts, but situation awareness is not always sufficient. We have investigated “option awareness” and the decision space to provide cognitive support for emergency managers to simulate computationally possible outcomes of different options before they make a decision. Employing a user-centered design process, we developed a computational model that rapidly generates ranges of likely outcomes for different options and displays them visually through a prototype decision-space interface that allows rapid comparison of the options. Feedback from emergency managers suggests that decision spaces may enable emergency managers to consider a wider range of options for decisions and may facilitate more targeted, effective decision making under uncertain conditions.
|
|
|
Kelli de Faria Cordeiro, Maria Luiza M Campos, & Marcos R. S. Borges. (2014). Adaptive integration of information supporting decision making: A case on humanitarian logistic. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 225–229). University Park, PA: The Pennsylvania State University.
Abstract: There is an urgent demand for information systems to gather heterogeneous information about needs, donations and warehouse stocks to provide an integrated view for decision making in humanitarian logistics. The dynamic flow of information, due to the unpredicted events, requires adaptive features. The traditional relational data model is not suitable due to its schema rigidity. As an alternative, Graph Data models complemented by semantic representations, like Linked Open Data on the Web, can be used. Based on both, this research proposes an approach for the adaptive integration of information and an associated architecture. An application example is discussed in a real scenario where relief goods are managed through a dynamic and multi-perspective view.
|
|
|
Erman Coskun, & Dilek Ozceylan. (2011). Complexity in emergency management and disaster response information systems (EMDRIS). In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Today emergencies seem more complex than ever. Process of managing these emergencies also becomes more complex because of increasing number of involved parties, increasing number of people affected, and increasing amount of resources. This complexity, inherent in emergency management, brings lots of challenges to decision makers and emergency responders. Information systems and technologies are utilized in different areas of emergency management. However complexity increases exponentially in emergency situations and it requires more sophisticated IS and IT and it makes response and management more challenging. Thus analyzing the root causes of emergency management information systems complexity is crucial for improving emergency response effectiveness. This paper frames the issue of information systems complexity by focusing on the types of complexities involved in emergency management phases and explaining each complexity type. We propose 6 different complexity types: Human Complexity, Technologic Complexity, Event Complexity, Interaction Complexity, Decision Making Complexity, and Cultural Complexity.
|
|
|
Simone De Kleermaeker, & Jan Verkade. (2013). A decision support system for effective use of probability forecasts. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 290–295). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: Often, water management decisions are based on hydrological forecasts, which are affected by inherent uncertainties. It is increasingly common for forecasters to make explicit estimates of these uncertainties. Associated benefits include the decision makers' increased awareness of forecasting uncertainties and the potential for risk-based decision-making. Also, a more strict separation of responsibilities between forecasters and decision maker can be made. A recent study identified some issues related to the effective use of probability forecasts. These add a dimension to an already multi-dimensional problem, making it increasingly difficult for decision makers to extract relevant information from a forecast. Secondly, while probability forecasts provide a necessary ingredient for risk-based decision making, other ingredients may not be fully known, including estimates of flood damage and costs and effect of damage reducing measures. Here, we present suggestions for resolving these issues and the integration of those solutions in a prototype decision support system (DSS). A pathway for further development is outlined.
|
|
|
Jill L. Drury, Amanda Anganes, Heather Byrne, Maria C. Casipe, Roger Dejean, Simone Hill, et al. (2012). Badge-primed decision making. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: We have been investigating new decision support methods for emergency responders. Most recently, we have added to our decision support prototype the concept of “badges”: symbols that cue decision makers to the top-ranked option(s) that are the recommended alternatives for a particular decision. This paper provides the rationale for badges, a description of the initial implementation, results from our first experiment with badges, and a discussion of the next steps. As a report on work-in-progress, the primary contribution of this paper is the description of the concept of badges and its proposed use for emergency response decision making. © 2012 ISCRAM.
|
|
|
Jill L. Drury, Gary L. Klein, Mark Pfaff, & Steven O. Entezari. (2012). Establishing collaborative option awareness during crisis management. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: This paper presents empirical results of the use of a novel decision support prototype for emergency response situations, which was designed to enhance the understanding of the relative desirability of one potential course of action versus another. We have termed this understanding “option awareness.” In particular, this paper describes the process employed by pairs of experiment participants while performing emergency responder roles using different types of “decision space” visualizations to help them collaborate on decisions. We examined the decision making process via a detailed analysis of the communication between the cooperating team members. The results yield implications for design approaches for visualizing option awareness. © 2012 ISCRAM.
|
|