Anna Gustafsson, & Tobias Andersson Granberg. (2012). Dynamic planning of fire and rescue services. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: We discuss decision support tools used for more efficient planning of fire and rescue services. The methodology considers small and flexible units and includes dynamic utilization of the existing resources. We develop a quantitative measure for preparedness and use it as a basis for decision support. By constantly accounting for the current situation and using intelligent strategies to locate and allocate resources that support good preparedness, response times can be shortened. The tools will be tested using an experimental setup that includes human-in-the-loop simulations, and the results will compare situations that occur when the decision makers have and do not have access to the developed tools. © 2012 ISCRAM.
|
John R. Harrald, Theresa I. Jefferson, Frank Fiedrich, Sebnem Sener, & Clinton Mixted-Freeman. (2007). A first step in decision support tools for humanitarian assistance during catastrophic disasters: Modeling hazard generated needs. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 51–56). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: The US has not yet developed adequate models for estimating hazard generated needs, the necessary first step for developing useful decision support systems needed to estimate the capability and capacity of the response forces required. Modeling and technology required to support the decisions made by humanitarian relief organizations requires scenario driven catastrophic planning. This paper documents the lack of effective decision support tools and systems for humanitarian aid and describes the current state of models and methods used for determination of hazard generated needs. The paper discusses work performed on a catastrophic earthquake preparedness project. It outlines how the results of this project will be used to advance the modeling and decision support capabilities of federal, state and local disaster planners and emergency responders.
|
Jutta Hild, Jonathan Ott, Yvonne Fischer, & Christian Glökler. (2010). Markov based decision support for cost-optimal response in security management. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In this contribution, we introduce a prototype of a decision support tool for cost-optimal response in security management. The threat situation of a closed infrastructure, exposed to multiple threats, and the corresponding response actions are modeled by a continuous-time Markov decision process (CMDP). Since the CMDP cannot be solved exactly for large infrastructures, the response actions are determined from a heuristic, based on an index rule. The decision support tool's user interface displays the infrastructure's current threat state and proposes the heuristic response actions to the decision maker. In this way, global situation awareness can be enhanced and the decision maker is able to initiate an almost cost-optimal response action in short time.
|
Chris Murphy, Doug Phair, & Courtney Aquilina. (2005). A prototype multi-modal decision support architecture. In B. C. B. Van de Walle (Ed.), Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management (pp. 135–137). Brussels: Royal Flemish Academy of Belgium.
Abstract: This paper presents the design of a decision support tool for crisis response applications. We propose a system to replace emergency contact calling trees with a multi-modal personnel contact architecture. This architecture consists of a centralized notification framework using existing enterprise e-mail, Web site, instant messaging, and voice over IP (VOIP) infrastructure. Response and audit data is collected and stored for analysis, and can be reviewed using a variety of methods in real time. Details of our prototype implementation are discussed. Specifically, we address multi-modal communication techniques and their benefits, enterprise deployment challenges, and opportunities for further research.
|
Adam Widera, Hanns-Alexander Dietrich, Bernd Hellingrath, & Jörg Becker. (2013). Understanding humanitarian supply chains – Developing an integrated process analysis toolkit. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 210–219). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: In this paper we present the development of an integrated process analysis toolkit for humanitarian logistics. The toolkit integrates a conceptual and a technological component. Our approach follows a case study-based modeling and design approach. The developed concept was evaluated in two humanitarian organizations. Based on these results we extended and integrated the tool-supported process analysis approach, which is ready to use for the structural and quantitative analysis of humanitarian logistics processes. The toolkit can be applied in humanitarian organizations as a decision support tool for designing, planning and executing their logistics processes. Thus, the application affects the preparedness of humanitarian organizations as well as their response performance. The process analysis toolkit is embedded in an overall research agenda with the objective to provide humanitarian organizations with the capabilities to identify, monitor, and improve their logistics processes respecting the organization specific objectives.
|