|
Ronja Addams-Moring. (2007). Tsunami self-evacuation of a group of western travelers and resulting requirements for multi-hazard early warning. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 83–92). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper describes the experiences of a West-European project group in Sri Lanka in March 2005, during a tsunami threat. They had previous disaster related knowledge and used both local guidance, global media and contacts back home, but could not get adequate information about how much time they had, how likely a tsunami was, or which countries had ordered evacuations. Their decision to evacuate was based on their own reasoning and influenced most by one trusted local resident. Their mobile phone communication with their relations in Europe created a de facto ad hoc mobile emergency announcement (MEA) system. Their decision to return relied heavily on the ad hoc MEA text messages, as local authorities had not yet issued an all-clear. The findings underline the importance of multiple early warning languages and delivery channels and suggest that when relevant, 'event onset time' should be explicit in early warning.
|
|
|
Patricia Gómez Bello, Ignacio Aedo, Fausto Sainz, Paloma Díaz, & Jorge De Castro. (2006). M-ARCE: Designing an ubiquitous mobile office for disaster mitigation, services and configuration. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 121–126). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: Cooperation and mutual assistance in emergency situations is one of the main objectives of the Latin-American Association of Governmental Organisms of Civil Defense and Protection. To promote such collaboration m-ARCE has been developed; an ubiquitous mobile office for disaster mitigation where users can send and receive information anywhere and anytime. When a catastrophe happens in a country, and almost all infrastructure is destroyed, mobile technology, such as mobile devices and wireless networks, offers the user resources to ask for help and to manage it. Latin-American Countries often suffer catastrophes that provoke numerous human losses and major economic and social problems. International assistance and collaboration with the affected country is necessary to help in its recovery. The Web, like Internet, offers static office services to users who can access information using an infrastructure in indoor environments. On the other hand, mobile computing and networking use the Internet, together with mobile physical devices linked to it, and software platforms built upon it, to design and coordinate systems across countries. In the ubiquitous mobile office design, we describe how services, such as chat, email and wireless communication, should be configured for emergency situation. We make use of ubiquitous hypermedia -linked nodes in ubiquitous spaces- to ensure mobility and accessibility to the mobile device interface, such as PDAs and smartphones.
|
|
|
Timothy Clark, & Rich Curran. (2013). Geospatial site suitability modeling for US department of defense humanitarian assistance projects. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 463–467). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: The purpose of this paper is to outline the requirement for data-driven methods for determining optimal geographic locations of United States Department of Defense (DOD) Humanitarian Assistance (HA) resources, including disaster mitigation and preparedness projects. HA project managers and tactical implementers charged with cost-efficient deployment of HA resources are challenged to produce measurable effects, in addition to contributing to broader Joint and Interagency-informed security assistance strategies. To address these issues, our ongoing research advocates geospatial multi-criteria site suitability decision support capabilities that leverage 1) existing geospatial resource location-allocation methodology as applied in government, retail, and commercial sectors; 2) user-generated criteria and objective preferences applied in widely-used decision frameworks; 3) assessments of the feasibility of obtaining data at a geographic scale where DOD tactical/operational level users can benefit from the model outputs; and 4) social science theory related to the HA domain criteria that form the foundation of potential decision models.
|
|
|
Kishimoto, M., Osaragi, T., & Chan Yili. (2023). Evaluation of Improvement Projects in Densely Built-Up Area using a Large Earthquake Disaster Simulator: A case study in Kyojima Area, Tokyo. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 546–564). Omaha, USA: University of Nebraska at Omaha.
Abstract: This paper aims to (1) evaluate the disaster mitigation effects of improvement projects in a certain area and (2) provide a basis for strategic planning to promote further improvements. Specifically, we decompose local improvements in the analyzed area into multiple scenarios and examine their effects and issues. First, we describe the “large earthquake disaster simulator,” which estimates property damage and human casualties in a large earthquake. Then, the Kyojima area of Sumida-Ku, Tokyo, is selected as the analyzed area. We decompose the improvement projects implemented during 2006 – 2016 and prepare six scenarios. Finally, a simulation analysis is conducted. We demonstrate that fire spread could be effectively blocked by (1) ensuring sufficient road width and (2) identifying the critical buildings in terms of fire spread mitigation and making them fireproof.
|
|
|
Laura Montells, Susana Montero, Paloma Díaz, Ignacio Aedo, & Jorge De Castro. (2006). SIGAME: Web-based System for resources management on emergencies. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 1–5). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: This paper describes SIGAME, a web-based application for national cooperation in case of disaster. The main motivation of SIGAME is to provide a quick, flexible, reliable, many-to-many, updated communication channel for improving and coordinating the response of assistance suppliers (located at several territories) when an emergency occurs. In order to make communication as efficient as possible and taking into account the organizational diversities of the suppliers, the political implication and the characteristics of the future users, a user centered design method for web-based interactive systems seems to be the best solution for attending the designer through the different phases and products of the design process. In particular, we will focus on the techniques used both to involve stakeholders in the design and to collect requirements.
|
|
|
Muhammad Tauhidur Rahman, & Tarek Rashed. (2007). Towards a geospatial approach to post-disaster environmental impact assessment. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 219–226). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Natural disasters often leave profound impacts on the environment. Existing disaster impact assessment methods fall short in facilitating the relief work and in conducting cross-sectional comparison of various facets of such impacts. The development of a standardized index for measuring/monitoring the environmental impacts of disasters is necessary to address this gap. This paper proposes a conceptual framework to study the environmental impacts via remote sensing/GIS based geospatial analytical approach by developing a post-disaster environmental severity index. It considers physical, social and built-in components of the environment and identifies several key indicators of disaster impacts. Through statistical decomposition of a large number of environmental impact indicators, the study proposes a composite post-disaster environmental severity index (PDESI). Mapping of the proposed index would help identification of areas and component of the environment that are severely affected by a disaster, and formulation of disaster mitigation and damage recovery plans accordingly.
|
|
|
Takuya Oki. (2018). Possibility of Using Tweets to Detect Crowd Congestion: A Case Study Using Tweets just before/after the Great East Japan Earthquake. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 584–596). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: During large earthquakes, it is critical to safely guide evacuation efforts and to prevent accidents caused by congestion. In this paper, we focus on detecting the degree of crowd congestion following an earthquake based on information posted to Social Networking Services (SNSs). This research uses text data posted to Twitter just before/after the occurrence of the Great East Japan Earthquake (11 March 2011 at 02:46 PM JST). First, we extract co-occurring place names, proper nouns, and time-series information from tweets about congestion in the Tokyo metropolitan area (TMA). Next, using these extracted data, we analyze the frequency and spatiotemporal characteristics of these tweets. Finally, we identify expressions that describe the degree of crowd congestion and discuss methods to quantify these expressions based on a questionnaire survey and tweets that contain a photograph.
|
|