Abstract: In the past a crisis event was notified by local witnesses that use to make phone calls to the special services. They reported by speech according to their observation on the crisis site. The recent improvements in the area of human computer interfaces make possible the development of context-aware systems for crisis management that support people in escaping a crisis even before external help is available at site. Apart from collecting the people's reports on the crisis, these systems are assumed to automatically extract useful clues during typical human computer interaction sessions. The novelty of the current research resides in the attempt to involve computer vision techniques for performing an automatic evaluation of facial expressions during human-computer interaction sessions with a crisis management system. The current paper details an approach for an automatic facial expression recognition module that may be included in crisis-oriented applications. The algorithm uses Active Appearance Model for facial shape extraction and SVM classifier for Action Units detection and facial expression recognition.