Corine H.G. Horsch, Nanja J. J. M. Smets, Mark A. Neerincx, & Raymond H. Cuijpers. (2013). Revealing unexpected effects of rescue robots' team-membership in a virtual environment. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 627–631). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: In urban search and rescue (USAR) situations resources are limited and workload is high. Robots that act as team players instead of tools could help in these situations. A Virtual Reality (VR) experiment was set up to test if team performance of a human-robot team increases when the robot act as such a team player. Three robot settings were tested ranging from the robot as a tool to the robot as a team player. Unexpectedly, team performance seemed to be the best for the tool condition. Two side-effects of increasing robot's teammembership could explain this result: Mental workload increased for the humans who had to work with the team-playing robot, whereas the tendency to share information was reduced between these humans. Future research should, thus, focus on team-memberships that improve communication and reduce cognitive workload.
|
Rosemarijn Looije, Mark A. Neerincx, & Geert-Jan M. Kruijff. (2007). Affective collaborative robots for safety & crisis management in the field. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 497–506). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: The lack of human-robot collaboration currently presents a bottleneck to widespread use of robots in urban search & rescue (USAR) missions. The paper argues that an important aspect of realizing human-robot collaboration is collaborative control, and the recognition and expression of affect. Affective collaborative robots can enhance joint human-robot performance by adapting the robot's (social) role and interaction to the user's affective state and the context. Current USAR robots lack these capabilities. This paper presents theory, application domains, and requirements for affective collaborative robots based on the current state of the art. With methods from cognitive architectures, affective computing, and human-robot interaction, three core functions of affective collaborative robots can be realized: sliding autonomy, affective communication, and adaptive attitude. These robot functions can substantially enhance the efficiency and effectiveness of rescue workers and meanwhile reduce their cognitive workload. Furthermore, robots with such functions can approach civilians in the field appropriately.
|