Tina Comes, Claudine Conrado, Michael Hiete, Michiel Kamermans, Gregor Pavlin, & Niek Wijngaards. (2010). An intelligent decision support system for decision making under uncertainty in distributed reasoning frameworks. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper presents an intelligent system facilitating better-informed decision making under severe uncertainty as found in emergency management. The construction of decision-relevant scenarios, being coherent and plausible descriptions of a situation and its future development, is used as a rationale for collecting, organizing, filtering and processing information for decision making. The development of scenarios is geared to assessing decision alternatives, thus avoiding time-consuming analysis and processing of irrelevant information. The scenarios are constructed in a distributed setting allowing for a flexible adaptation of reasoning (principles and processes) to the problem at hand and the information available. This approach ensures that each decision can be founded on a coherent set of scenarios, which was constructed using the best expertise available within a limited timeframe. Our theoretical framework is demonstrated in a distributed decision support system by orchestrating both automated systems and human experts into workflows tailored to each specific problem.
|
Ali Khalili-Araghi, Uwe Glässer, Hamed Yaghoubi Shahir, Brian Fisher, & Piper Jackson. (2012). Intelligent decision support for emergency responses. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: With a coastline touching upon the Pacific and Atlantic Oceans, the Great Lakes and the Arctic Sea, the Canadian MSOCs are faced with a daunting task. They are responsible for both routine duties, including patrolling coastal areas and collecting satellite data, as well as critical missions, such as emergency response and crime intervention. Both kinds of mission require the fusion of data from a variety of sources and the orchestration of myriad heterogeneous resources over great physical distances. They must deal with uncertainty, both in terms of what can be known and also in the outcomes of actions, and must interact with an environment prone to dynamic change. We present the architecture and core mechanisms of a decision support system for marine safety and security operations (Glässer, Jackson, Araghi, When and Shahir, 2010). The goal of this system is to enhance complex command and control tasks by improving situational awareness and automating task assignments. This system concept includes adaptive information fusion techniques integrated with decentralized control mechanisms for dynamic resource configuration management and task execution management under uncertainty. Autonomously operating agents employ collaboration and coordination to collectively form an intelligent decision support system. © 2012 ISCRAM.
|
Oduor Erick Nelson Otieno, Anna Gryszkiewicz, Nihal Siriwardanegea, & Fang Chen. (2010). Concept for intelligent integrated system for crisis management. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In this document, we describe the need for providing a uniform common picture that is missing in several crisis management decision support tools. Through research, we have reviewed some existing crisis management support systems in use and noted key user requirements that these tools are missing. A significant point of this research is to stress the importance of developing a decision support system that would improve the way an ideal support system would collect, analyze and disseminate necessary information to a crisis management decision maker. We also note the importance of ensuring that such a tool presents information to its user over a user friendly interface. The structure thus developed should be a standalone application that could be incorporated into existing platforms (Rinkineva, 2004) such as cell phones, PDAs and laptops.
|
Jim Steel, Renato Iannella, & Ho-Pun Lam. (2008). Using ontologies for decision support in resource messaging. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 276–284). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Emergency management is by its nature, and in some jurisdictions by its definition, an activity that requires a concerted effort by a number of governmental and non-governmental agencies. There is a growing appreciation that collaboration between these parties is best served through the use of interoperable standards for message formats for purposes such as alerting and resource exchange. However, it is also important to realize that, although much advantage can be drawn from standardizing certain aspects of communication, such as the structure of messages, different agencies will use different vocabularies. In this paper we discuss how ontologies can be used with standard messaging formats for resource messaging to enable intelligent decision support mechanisms in the presence of differing vocabularies across organizational boundaries. We also present a survey of the opportunities for using ontologies in emergency management, and the issues that must be addressed.
|
Felix Wex, Guido Schryen, & Dirk Neumann. (2011). Intelligent decision support for centralized coordination during Emergency Response. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Automated coordination is regarded as a novel approaches in Emergency Response Systems (ERS), and especially resource allocation has been understudied in former research. The contribution of this paper is the introduction of two variants of a novel resource allocation mechanism that provide decision support to the centralized Emergency Operations Center (EOC). Two quantitative models are computationally validated using real-time, data-driven, Monte-Carlo simulations promoting reliable propositions of distributed resource allocations and schedules. Various requirements are derived through a literature analysis. Comparative analyses attest that the Monte-Carlo approach outperforms a well-defined benchmark.
|